127 research outputs found

    Potentials and limitations of NFIs and remote sensing in the assessment of harvest rates: a reply to Breidenbach et al.

    Get PDF
    AbstractThe timely and accurate monitoring of forest resources is becoming of increasing importance in light of the multi-functionality of these ecosystems and their increasing vulnerability to climate change. Remote sensing observations of tree cover and systematic ground observations from National Forest Inventories (NFIs) represent the two major sources of information to assess forest area and use. The specificity of two methods is calling for an in-depth analysis of their strengths and weaknesses and for the design of novel methods emerging from the integration of satellite and surface data. On this specific debate, a recent paper by Breidenbach et al. published in this journal suggests that the detection of a recent increase in EU forest harvest rate—as reported in Nature by Ceccherini et al.—is largely due to technical limitations of satellite-based mapping. The article centers on the difficulty of the approaches to estimate wood harvest based on remote sensing. However, it does not discuss issues with the robustness of validation approaches solely based on NFIs. Here we discuss the use of plot data as a validation set for remote sensing products, discussing potentials and limitations of both NFIs and remote sensing, and how they can be used synergistically. Finally, we highlight the need to collect in situ data that is both relevant and compatible with remote sensing products within the European Union

    Vegetation-based climate mitigation in a warmer and greener World

    Get PDF
    The mitigation potential of vegetation-driven biophysical effects is strongly influenced by the background climate and will therefore be influenced by global warming. Based on an ensemble of remote sensing datasets, here we first estimate the temperature sensitivities to changes in leaf area over the period 2003–2014 as a function of key environmental drivers. These sensitivities are then used to predict temperature changes induced by future leaf area dynamics under four scenarios. Results show that by 2100, under high-emission scenario, greening will likely mitigate land warming by 0.71 ± 0.40 °C, and 83% of such effect (0.59 ± 0.41 °C) is driven by the increase in plant carbon sequestration, while the remaining cooling (0.12 ± 0.05 °C) is due to biophysical land-atmosphere interactions. In addition, our results show a large potential of vegetation to reduce future land warming in the very-stringent scenario (35 ± 20% of the overall warming signal), whereas this effect is limited to 11 ± 6% under the high-emission scenario

    Cinétique de décroissance de la surface verte et estimation du rendement du blé d'hiver

    Get PDF
    Estimating winter wheat yield through the decreasing phase of its green area. A large number of agrometeorological models for crop yield assessment are available with various levels of complexity and empiricism. However, the current development of models for wheat yield forecasting does not always reflect the inclusion of the loss of valuable green area and its relation to biotic and abiotic processes in production situation. In this study the senescence phase of winter wheat (Triticum aestivum L.) is monitored through the GAI (Green Area Index), calculated from digital hemispherical photographies taken over plots in Belgium, Grand-Duchy of Luxembourg and France. Two curve-fitting functions (modified Gompertz and modified logistic) are used to describe the senescence phase. Metrics derived from these functions and characterizing this phase (i.e. the maximum value of GAI, the senescence rate and the time taken to reach either 37% or 50% of the green surface in the senescent phase) are related to final grain yields. The regression-based models calculated with these metrics showed that final yield could be estimated with a coefficient of determination of 0.83 and a RMSE of 0.48 t·ha-1. Such simple models may be considered as a first yield estimates that may be performed in order to provide a better integrated yield assessment in operational systems. Indeed, estimation of cereal-crop production, particularly wheat, is considered as a priority in most crop research programs due to the relevance of food grain to world agricultural production

    Biophysics and vegetation cover change: A process-based evaluation framework for confronting land surface models with satellite observations

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordLand use and land cover change (LULCC) alter the biophysical properties of the Earth's surface. The associated changes in vegetation cover can perturb the local surface energy balance, which in turn can affect the local climate. The sign and magnitude of this change in climate depends on the specific vegetation transition, its timing and its location, as well as on the background climate. Land surface models (LSMs) can be used to simulate such land-climate interactions and study their impact in past and future climates, but their capacity to model biophysical effects accurately across the globe remain unclear due to the complexity of the phenomena. Here we present a framework to evaluate the performance of such models with respect to a dedicated dataset derived from satellite remote sensing observations. Idealized simulations from four LSMs (JULES, ORCHIDEE, JSBACH and CLM) are combined with satellite observations to analyse the changes in radiative and turbulent fluxes caused by 15 specific vegetation cover transitions across geographic, seasonal and climatic gradients. The seasonal variation in net radiation associated with land cover change is the process that models capture best, whereas LSMs perform poorly when simulating spatial and climatic gradients of variation in latent, sensible and ground heat fluxes induced by land cover transitions. We expect that this analysis will help identify model limitations and prioritize efforts in model development as well as inform where consensus between model and observations is already met, ultimately helping to improve the robustness and consistency of model simulations to better inform land-based mitigation and adaptation policies.The study was funded by the FP7 LUC4C project (grant no. 603542

    Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis

    Get PDF
    High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR&thinsp;≦&thinsp;GPP &lt; SIF &lt; VIs∕VOD. SIF as an indicator of photosynthesis is maximised around the time of highest annual temperatures. The modelled GPP peaks at a similar time to APAR. The time lag of the annual peak between APAR and instantaneous SIF fluxes indicates that the SIF data do contain information on light-use efficiency of tundra vegetation, but further detailed studies are necessary to verify this. Delayed peak greenness compared to peak photosynthesis is consistently found across years and land-cover classes. A particularly late peak of the normalised difference vegetation index (NDVI) in regions with very small seasonality in greenness and a high amount of lakes probably originates from artefacts. Given the very short growing season in circumpolar areas, the average time difference in maximum annual photosynthetic activity and greenness or growth of 3 to 25 days (depending on the data sets chosen) is important and needs to be considered when using satellite observations as drivers in vegetation models.</p
    • …
    corecore