171 research outputs found

    Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance

    Get PDF
    A one-step electrochemical process had been employed to synthesize nanocomposite films of polypyrrole/graphene (PPy/GR) by electrochemical polymerisation on indium tin oxide (ITO) from an aqueous solution containing pyrrole monomer, graphene oxide (GO) nanosheets and sodium p-toluenesulfonate (NapTS). The X-ray diffraction (XRD) patterns showed that the typical peak of GO at 9.9o was missing from the nanocomposite’s diffraction pattern, suggesting that the GO had been stripped off of its oxygenous groups after the reaction. We postulated that a nanocomposite film was produced through a layer-by-layer deposition based on field emission scanning electron microscope (FESEM) images. The Raman spectroscopy profiles exhibited that the D/G intensity ratio (ID/IG) of PPy was not altered by the inclusion of GO due to the low concentration of the material used. However, the concentration was sufficient to increase the specific capacitance of the nanocomposite by 20 times compared to that of pure PPy, reflecting a synergistic effect between PPy and GR, as analysed by a three-electrode electrochemical cell. The electrochemical performance of the nanocomposites was affected by varying the deposition parameters such as concentrations of pyrrole and GO, scan rate, deposition time and deposition potential

    An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model

    Get PDF
    We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke

    Ruthenium oxide-carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications.

    Get PDF
    In this review article, we have presented for the first time the new applications of supercapacitor technologies and working principles of the family of RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites. Our review focuses on pseudocapacitors and symmetric and asymmetric supercapacitors. Over the last years, the supercapacitors as a new technology in energy storage systems have attracted more and more attention. They have some unique characteristics such as fast charge/discharge capability, high energy and power densities, and long stability. However, the need for economic, compatible, and easy synthesis materials for supercapacitors have led to the development of RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2. Therefore, the aim of this manuscript was to review RuO2-carbon-based nanofiller-reinforced conducting polymer nanocomposites with RuO2 over the last 17 years

    Shaping and Structuring Supramolecular Gels

    Get PDF
    Supramolecular gels assemble via non-covalent interactions between low-molecular-weight gelators (LMWGs). The gels form a solid-like nanoscale network spanning a liquid-like continuous phase, translating molecular-scale information into materials performance. However, gels based on LMWGs are often difficult to manipulate, easily destroyed and have poor rheological performance. The recurring image of newly-discovered supramolecular gels is that of an inverted vial showing that the gel can support its own weight against gravity. Such images reflect the limitation that these gels simply fill the vessel in which they are made, with limited ability to be shaped. This property prevents supramolecular gels from having the same impact as polymer gels, despite greater synthetic tunability, reversibility and bio/environmental compatibility. In this Review, we evaluate strategies for imposing different shapes onto supramolecular gels and for patterning structures within them. We review fabrication methods including moulding, self-healing, 3D printing, photopatterning, diffusion and surface-mediated patterning. We discuss gelator chemistries amenable to each method, highlighting how a multi-component approach can aid shaping and structuring. Supramolecular gels with defined shapes, or patterned structures with precisely-controlled compositions, have the potential to intervene in applications such as tissue engineering and nanoscale electronics, as well as opening-up new technologies

    An Ammonium Vanadate/MXene Nanocomposite for High-Performance Ammonium Ion Storage

    No full text
    Energy storage systems with non-metallic charge carriers such as ammonium-ion (NH4+) are inherently safe and enable large-scale storage. Unlike metal ions with spherical symmetry, the intercalation of ammonium ions with a tetrahedral structure is symmetry-specific, leading to high power density and long-term cycling stability. However, developing suitable electrode materials that can reversibly host NH4+ ions to improve electrochemical performance is challenging. To address these issues, here we synthesized a sandwich-structured ammonium vanadate (NH4V4O10) and MXene (Ti3C2Tx) composite for the first time and employed it as a high-performance electrode for ammonium ion storage. Benefiting from the unique nano-architecture, the developed NH4V4O10/MXene electrode delivered an areal capacitance of 229 mF cm−2 at a specific current of 1 mA cm−2 with ∼98% retention after 5000 charge–discharge cycles. Electrochemical analyses, supplemented with Raman spectroscopy and X-ray diffractometry, reveal the superior charge kinetics and structural stability of the NH4V4O10/MXene electrode under harsh operation conditions. The cell-type ammonium ion asymmetric capacitor (AIC) assembled using NH4V4O8/MXene as the positive electrode and MXene as the negative electrode delivered an energy density of 17.3 W h kg−1 with excellent capacitance retention after 10 000 charge–discharge cycles. These results provide new insights for the development of safe and reliable next-generation clean energy technologies based on unconventional, non-metal-ion-based charge storage mechanisms

    V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device

    Get PDF
    A simple and scalable approach has been reported for V(2)O(5) encapsulation over interconnected multi-walled carbon nanotubes (MWCNTs) network using chemical bath deposition method. Chemically synthesized V(2)O(5)/MWCNTs electrode exhibited excellent charge-discharge capability with extraordinary cycling retention of 93% over 4000 cycles in liquid-electrolyte. Electrochemical investigations have been performed to evaluate the origin of capacitive behavior from dual contribution of surface-controlled and diffusion-controlled charge components. Furthermore, a complete flexible solid-state, flexible symmetric supercapacitor (FSS-SSC) device was assembled with V(2)O(5)/MWCNTs electrodes which yield remarkable values of specific power and energy densities along with enhanced cyclic stability over liquid configuration. As a practical demonstration, the constructed device was used to lit the ‘VNIT’ acronym assembled using 21 LED’s
    corecore