62 research outputs found

    Translanguaging practices of Chinese/English bilingual engineers’ communications in the workplace

    Get PDF
    Existing literature argues for the urgent need to improve workplace and professional communication in the engineering field across the world. This paper reports on a study examining Chinese/English bilingual engineers’ translanguaging practices in their communications in English-speaking high-tech corporations in the United States. Evidence showed that bilingual engineers translanguaged extensively to construct meaning to meet the diverse communication needs at their workplace, which enables them to demonstrate their professional talents and skills. However, when English was the sole language for the interaction, they struggled to sound like English native speakers to convey their ideas and present their work, which disadvantaged them professionally, socially and emotional as professionals. Therefore, this study calls for a creation of a translanguaging space in the workplace to empower bilingual engineers and also a need to modify engineering education programs that recognize multilingual competence of bilinguals and enhance the development of their English professional communication ability (speaking and writing) in higher education

    Visualization of Fast Ion Phase-Space Flow Driven by Alfvén Instabilities

    Get PDF
    Fast ion phase-space flow, driven by Alfvén eigenmodes (AEs), is measured by an imaging neutral particle analyzer in the DIII-D tokamak. The flow firstly appears near the minimum safety factor at the injection energy of neutral beams, and then moves radially inward and outward by gaining and losing energy, respectively. The flow trajectories in phase space align well with the intersection lines of the constant magnetic moment surfaces and constant E−(ω/n)Pζ surfaces, where E, Pζ are the energy and canonical toroidal momentum of ions; ω and n are angular frequencies and toroidal mode numbers of AEs. It is found that the flow is so destructive that the thermalization of fast ions is no longer observed in regions of strong interaction. The measured phase-space flow is consistent with nonlinear hybrid kinetic-magnetohydrodynamics simulation. Calculations of the relatively narrow phase-space islands reveal that fast ions must transition between different flow trajectories to experience large-scale phase-space transport

    Beam modulation and bump-on-tail effects on Alfvén eigenmode stability in DIII-D

    Get PDF
    Beam modulation effects on Alfvén eigenmode stability have been investigated in a recent DIII-D experiment and show that variations in neutral beam modulation period can have an impact on the beam driven Alfvén eigenmode spectrum and resultant fast ion transport despite similar time-averaged input power. The experiment was carried out during the current ramp phase of L-mode discharges heated with sub-Alfvénic 50–80 kV deuterium neutral beams that drive a variety of Alfvén eigenmodes unstable. The modulation period of two interleaved beams with different tangency radii was varied from shot to shot in order to modify the relative time dependent mix of the beam pitch angle distribution as well as the persistence of a bump-on-tail feature near the injection energy (a feature confirmed by imaging neutral particle analyzer measurements). As the beam modulation period is varied from 7 ms to 30 ms on/off (typical full energy slowing down time of τslow ≈ 50 ms at mid-radius), toroidicity-induced Alfvén eigenmodes (TAEs) located in the outer periphery of the plasma become intermittent and coincident with the more tangential beam. Core mode activity changes from reversed shear Alfvén eigenmodes (RSAEs) to a mix of RSAE and beta-induced Alfvén eigenmodes. Discharges with 30 ms on/off period do not have a persistent bump-on-tail feature, have the lowest average mode amplitude and least fast ion transport. Detailed analysis of an individual TAE using TRANSP kick modeling (Monte Carlo evolution of the distribution function with probabilistic \u27kicks\u27 by the AEs) and the resistive MHD code with kinetic fast ions, MEGA, find no strong role of energy gradient drive due to bump-on-tail features. Instead, the observed TAE modulation with interleaved beams is likely a pitch angle dependent result combined with slowing down of the tangential beam between pulses. For the conditions investigated, bump-on-tail contributions to TAE drive were found to be 5% or less of the total drive at any given time

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore