50 research outputs found

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Exploiting protein flexibility to predict the location of allosteric sites

    Get PDF
    Background: Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results: By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions: We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors

    A gene conversion hotspot in the human growth hormone (GH1) gene promoter

    No full text
    To assess the evolutionary importance of nonallelic (or interlocus) gene conversion for the highly polymorphic human growth hormone (GH1) gene promoter, sequence variation in this region was studied in four different ethnic groups. For 14 SNPs in the proximal GH1 promoter (535 bp), 60 different haplotypes were observed in 577 individuals (156 Britons, 116 Spaniards, 163 West-Africans, 142 Asians). Using a novel coalescence-based statistical test, significant evidence was found in the British, Spanish, and African groups for GH1 having acted as an acceptor of gene conversion, with at least one of the four paralogous GH gene promoters serving as the donor (and specifically GH2 in the Britons and Spaniards). The average gene conversion tract length was estimated to be 84 bp. A gene conversion hotspot was identified, spanning the GH1 transcriptional initiation site (positions -6 to 125). Although these findings serve to highlight the importance of gene conversion for the recent evolution of the human GH1 promoter, its relative frequency does not appear to be related simply to the presence of specific DNA sequence motifs or secondary structures, the degree of homology between GH paralogs, the distance between them, or their transcriptional orientation. The GH1 promoter was also found to be highly polymorphic in chimpanzee but not in macaque. This may reflect the lower degree of pair-wise similarity between the GH1 promoter and its paralogs in macaque (mean, 92.0%) as compared to chimpanzee (93.5%) and human (94.0%), and hence provides further support for the idea of a threshold (perhaps around 92%) below which gene conversion is reduced or abolished

    Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence.</p> <p>Results</p> <p>We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors) in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of <it>SMOX</it> gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways.</p> <p>Conclusions</p> <p>Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.</p
    corecore