1,685 research outputs found
Emergent complex neural dynamics
A large repertoire of spatiotemporal activity patterns in the brain is the
basis for adaptive behaviour. Understanding the mechanism by which the brain's
hundred billion neurons and hundred trillion synapses manage to produce such a
range of cortical configurations in a flexible manner remains a fundamental
problem in neuroscience. One plausible solution is the involvement of universal
mechanisms of emergent complex phenomena evident in dynamical systems poised
near a critical point of a second-order phase transition. We review recent
theoretical and empirical results supporting the notion that the brain is
naturally poised near criticality, as well as its implications for better
understanding of the brain
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
The interplay of intrinsic and extrinsic bounded noises in genetic networks
After being considered as a nuisance to be filtered out, it became recently
clear that biochemical noise plays a complex role, often fully functional, for
a genetic network. The influence of intrinsic and extrinsic noises on genetic
networks has intensively been investigated in last ten years, though
contributions on the co-presence of both are sparse. Extrinsic noise is usually
modeled as an unbounded white or colored gaussian stochastic process, even
though realistic stochastic perturbations are clearly bounded. In this paper we
consider Gillespie-like stochastic models of nonlinear networks, i.e. the
intrinsic noise, where the model jump rates are affected by colored bounded
extrinsic noises synthesized by a suitable biochemical state-dependent Langevin
system. These systems are described by a master equation, and a simulation
algorithm to analyze them is derived. This new modeling paradigm should enlarge
the class of systems amenable at modeling.
We investigated the influence of both amplitude and autocorrelation time of a
extrinsic Sine-Wiener noise on: the Michaelis-Menten approximation of
noisy enzymatic reactions, which we show to be applicable also in co-presence
of both intrinsic and extrinsic noise, a model of enzymatic futile cycle
and a genetic toggle switch. In and we show that the
presence of a bounded extrinsic noise induces qualitative modifications in the
probability densities of the involved chemicals, where new modes emerge, thus
suggesting the possibile functional role of bounded noises
Empathetic Information Seeking Support using Generative Artificial Intelligence
This paper introduces a novel perspective on empathy of generative AI systems (GAIS) and develops a Stimuli-Organism-Response based theoretical framework to enhance conversational GAIS. Regardless of its broader applications, this framework aims to equip GAIS with the ability to recognize and respond empathically to the emotions of information seekers. Employing machine learning and Natural Language Processing, EmoTune is being developed as a Proof of Concept to detect emotions in user inputs and align them with appropriate response strategies before engaging a pre-trained AI, such as ChatGPT, for empathetic response generation. EmoTune will subsequently assess emotions in AI responses before conveying them to users. The novelty of EmoTune is the introduction of an additional layer to the existing conversational AI architectures, recognizing and responding to users\u27 emotions, thus enhancing user trust, satisfaction, and acceptance. Our paper opens new research opportunities for designing empathetic GAIS and evaluating their effects on users
Holographic Conductivity in Disordered Systems
The main purpose of this paper is to holographically study the behavior of
conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane
systems in AdS/CFT with random closed string and open string background fields.
We give a prescription of calculating the DC conductivity holographically in
disordered systems. In particular, we find an analytical formula of the
conductivity in the presence of codimension one randomness. We also
systematically study the AC conductivity in various probe brane setups without
disorder and find analogues of Mott insulators.Comment: 43 pages, 28 figures, latex, references added, minor correction
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Generalization of auditory sensory and cognitive learning in typically developing children
Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills
Hydrogen Sulfide Protects HUVECs against Hydrogen Peroxide Induced Mitochondrial Dysfunction and Oxidative Stress
10.1371/journal.pone.0053147PLoS ONE82
ILC3 function as a double-edged sword in inflammatory bowel diseases
Inflammatory bowel diseases (IBD), composed mainly of Crohn’s disease (CD) and ulcerative colitis (UC), are strongly implicated in the development of intestinal inflammation lesions. Its exact etiology and pathogenesis are still undetermined. Recently accumulating evidence supports that group 3 innate lymphoid cells (ILC3) are responsible for gastrointestinal mucosal homeostasis through moderate generation of IL-22, IL-17, and GM-CSF in the physiological state. ILC3 contribute to the progression and aggravation of IBD while both IL-22 and IL-17, along with IFN-γ, are overexpressed by the dysregulation of NCR− ILC3 or NCR+ ILC3 function and the bias of NCR+ ILC3 towards ILC1 as well as regulatory ILC dysfunction in the pathological state. Herein, we feature the group 3 innate lymphoid cells’ development, biological function, maintenance of gut homeostasis, mediation of IBD occurrence, and potential application to IBD therapy
- …
