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ILC3 function as a double-edged sword
in inflammatory bowel diseases
Boning Zeng1,2, Shengnan Shi1, Gareth Ashworth3, Changjiang Dong3, Jing Liu4 and Feiyue Xing1,2

Abstract
Inflammatory bowel diseases (IBD), composed mainly of Crohn’s disease (CD) and ulcerative colitis (UC), are strongly
implicated in the development of intestinal inflammation lesions. Its exact etiology and pathogenesis are still
undetermined. Recently accumulating evidence supports that group 3 innate lymphoid cells (ILC3) are responsible for
gastrointestinal mucosal homeostasis through moderate generation of IL-22, IL-17, and GM-CSF in the physiological
state. ILC3 contribute to the progression and aggravation of IBD while both IL-22 and IL-17, along with IFN-γ, are
overexpressed by the dysregulation of NCR− ILC3 or NCR+ ILC3 function and the bias of NCR+ ILC3 towards ILC1 as
well as regulatory ILC dysfunction in the pathological state. Herein, we feature the group 3 innate lymphoid cells’
development, biological function, maintenance of gut homeostasis, mediation of IBD occurrence, and potential
application to IBD therapy.

Facts

● Group 3 innate lymphoid cells (ILC3) are
responsible for gastrointestinal mucosal homeostasis
through moderate generation of IL-22, IL-17 and
GM-CSF in the physiological state.

● ILC3 contribute to the progression and aggravation
of inflammatory bowel diseases by the dysregulation
of NCR− ILC3 or NCR+ ILC3 function and the bias
of NCR+ ILC3 towards ILC1 under the stimulation
of IL-12 generated by CD14+ dendritic cells as well
as regulatory ILC dysfunction in the pathological
state.

● The dysregulation of ILC3 results in overexpressions
of inflammatory cytokines IL-22, IL-17 and IFN-γ, in
which IL-17 can recruit neutrophil cells to disrupt E-
cadherin and junctional adhesion molecule-like

molecule (JAML), leading to the enhancement of
epithelial permeability.

● The ILC3 to ILC1 plasticity is reversible in the
presence of IL-23, IL-1β and retinoic acid produced
by CD14− dendritic cells.

Open questions

● What is an exact mechanistic process of the ILC3
dysregulation?

● Whether does the ILC3 dysregulation directly
impact ILCreg?

● How to reverse the ILCreg dysfunction and control
the level of CD14 DC?

● Why do the antibodies against human IL-17A or
IFN-γ not show significant efficacy in the treatment
of patients with Crohn’s disease?

Introduction
Inflammatory bowel diseases (IBD) display non-

specific and chronic inflammatory lesions occurring in
the intestinal mucosa and submucosa, represented by
ulcerative colitis (UC) and Crohn’s disease (CD) that are
considered distinct entities1. Although inherited
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tendency, environmental factors, microbial infection
and inappropriate immune responses are, up to now,
considered to be relevant, detailed etiology and pathol-
ogy of the diseases are still obscure, and the existing
remedies are not satisfactory. Moreover, the risk of
other chronic diseases or even colorectal cancer (CRC)
is dramatically increased in patients suffering from IBD.
Studies indicate that chronic inflammation is a
leading factor that converts low and high-grade dys-
plasia into CRC, and about 10–15% of the CRC patients
die from IBD2.
Although patients with CD and UC have some similar

pathological alteration, clinical symptoms and signs, there
are still some differences between them. CD can intrude
upon one or more regions of the intestinal mucosa and
submucosa, but the terminal ileum and colon are mainly
implicated. In contrast, UC has a significant impact on the
mucosal layer of the colon or rectum with enduring
inflammation and ulcers3. Studies have shown that CD is
mediated by a Th1 response. The highly expressed-tumor
necrosis factor (TNF), interferon-γ (IFN-γ) and
interleukin-17A (IL-17A) were found in CD4+ T cells
separated from inflammatory mucosal areas. Conversely,
UC is mediated by a Th2 immune response as IL-4, IL-5,
and IL-13 are highly secreted in inflamed tissue4.
Genome-wide associated studies and meta-analyses have
identified 200 loci related to both CD and UC5,6, showing
that most of the identified genes are associated with other
autoimmune diseases, such as psoriasis7. Interestingly,
approximately 70% of IBD-related genes are identical
between CD and UC, while only 23 and 30 loci are spe-
cifically related to the sensitivity to UC and CD, respec-
tively5,8. These susceptible genes are mainly linked to the
host immune system, including adaptive and innate
immune responses to protect epithelial tissue from
mycobacteria and autophagy9. In recent years, innate
immune cells (ILC) and their interaction with inflamma-
tory bowel diseases have attracted broad attention. Here,
we focus on mechanistic processes of ILC3 action in
development of IBD.

Innate lymphoid cells
ILC develop from common lymphoid progenitor cells

(CLP) and show resemblance to adaptive lymphocytes in
morphology. Dissimilarly, ILC have no rearranged
antigen-specific receptors but CD127 (IL-7Rα) is enriched
on their surface10. They can be divided into three groups
on the basis of expression of transcriptional factors and
cytokines11. Group 1 ILC (ILC1) can secrete the Th1-like
cytokine interferon-γ (IFN-γ) under the stimulation of IL-
12, IL-15, and IL-18 in the presence of transcriptional
factor T-bet12,13. Group 2 ILC (ILC2) can generate Th2-
like cytokines IL-5 and IL-13 under the stimulation of IL-
25 and thymic stromal lymphopoietin (TSLP) in the

presence of transcriptional factors RoRα and GATA314.
Group 3 ILC (ILC3) produce Th17- and Th22-like cyto-
kines IL-22, IL-17, and a granulocyte macrophage-colony
stimulating factor (GM-CSF) under the stimulation of IL-
23 and/or IL-1β in the presence of the RORγt and aryl
hydrocarbon receptor (AHR)15. A novel recognized subset
is regulatory ILC that secrete IL10 and TGF-β under the
stimulation of IL-2 in the presence of transcriptional
factors Id3 and sox416. These classification features look
similar to those of CD4+ T helper cell subsets (Fig. 1).
Recently, ILC have increasingly been considered as a key
moderator of tissue homeostasis and inflammation via
releasing cytokines. They have been known to exhibit
protective responses against microorganisms in lymphoid
tissue formation and in tissue remodeling after damage17.
Analogous to T and B cells, ILC are developed from

CLP. In the presence of nuclear factor interleukin-3 and
inhibitor of DNA-binding 2 (Id2), CLP deviate into
restricted common helper-like innate lymphoid pro-
genitor cells (CHILP). Afterwards, downstream precursor
cells (ILCP) of ILC express transcription factor PLZF and
can give rise to the ILC1, ILC2 and ILC3 subsets18,19.
Accumulating evidence shows that RORγt (encoded by
Rorc) drives differentiation of ILC3 from their precursor
ILCP20. The common cytokine receptor γ-chain (γc) is
essential for the maturation of ILC in mice, constituting
the components of IL-2, IL-4, IL-7, IL-9, IL-15, and IL-
2121. IL-15 is an indispensable regulator for the devel-
opment and differentiation of ILC1 and natural killer
(NK) cells. In contrast, ILC2 and ILC3 are dependent
on IL-7 for development. Knocking out IL-7 or IL-7Rα
will result in a greatly reduced number of ILC2 and
ILC322. However, the precise differentiation and
regulatory mechanisms of ILC in humans and mice
remain elusive.
Group 1 ILC comprise of NK cells and ILC1, they are

primarily involved in eliminating viruses and intracellular
pathogens. Both NK cells and ILC1 secrete IFN-γ and
depend on the transcriptional factor T-bet. NK cells
express transcriptional factor Eomesodermin (Eomes),
which is a key factor discriminating them from ILC123.
They express Nkp46, NK1.1 and CD90 in mice, but CD56,
CD16 and CD94 in humans24. Apart from NK cells, ILC1
may be further categorized to two subsets of Group 1 ILC,
lamina propria ILC1 and intraepithelial ILC1 (iILC1)
(Table 1). In mice, lamina propria ILC1 produce CD127,
Nkp46, T-bet and CD161, and iILC1 yield CD103, CD160,
and NK1.125. In humans, lamina propria ILC1 generate
CD127 and CD161, but not NKp44, CD56 and c-kit. In
contrast, iILC1 express CD56, CD103, CD94, CD160 and
Nkp44, but lack CD12725,26. ILC1 are mainly distributed
within the intestinal lamina propria in both mice and
humans, and the proportion of ILC1 is notably increased
in IBD patients27.
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Group 2 ILC were first found in fetal gut tissue and later
in skin, adipose tissue, lung, intestinal submucosa and
lymphoid organs. ILC2 enable tissue to repair and defend
against helminth infection28. They express IL7Rα, CD90.2
(Thy1), CD25, CD117, Sca1, KLRG1, ICOS and ST2 in
mice, but CD25, CD90, CD127, CD161, ST2 and CRTH2
in humans29.
Group 3 ILC are a heterogeneous group, which can be

divided into three subpopulations on the basis of their
function during embryogenesis and their cell-surface

expression of the natural cytotoxicity receptor NKp4630.
Group 3 ILC are characterized by expressing transcription
factors T-bet and RORγt and surface marker CD117
(c-kit)31. Lymphoid tissue inducer (LTi) cells were the
earliest discovered ILC3, which facilitate the formation of
lymph nodes and Peyer’s patches32. In mice, LTi cells
express CD117, CD45, CCR6, CD4 and CD127, whereas
human LTi cells show resemblance to mouse LTi cells,
but do not produce CD433. LTi cells assist the formation
of lymphoid organs in response to TNF-α and

Fig. 1 Characteristic comparison of ILCs with Th cells. According to different cellular phenotypes, transcriptional factors and functional factors,
T helper (Th) cells can be classified into Th1, Th2, Th17, Th22, Treg and so on. By contrast, ILCs can be divided into three groups ILC1, ILC2, ILC3 and
ILCreg
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lymphotoxin-β stimulation during embryogenesis. Post-
natally, they can also produce IL-17A and IL-22 to defend
the gastrointestinal tract against pathogens34. ILC3 exist
mainly in the intestinal mucosal tissue, playing an
important role in mucosal homeostasis and inflammatory
responses. In addition to LTi cells, human ILC3 can also
be subdivided into NCR+ ILC3 and NCR− ILC3 in light of
their expressing the natural cytotoxicity receptors NKp46,
NKp44 and NKp3035. NCR+ ILC3 account for about 70%
of the entire intestinal tract’s ILC. By contrast, NCR−

ILC3 are only around 15%12,36. In line with expressing
chemokine CCR6, ILC3 can fall into CCR6+ LTi and
CCR6− ILC3 lineage30,37. NKp44 expresses on CCR6−

ILC3 in humans, but instead NKp46 in mice, which
causes NCR− ILC3 to eventually develop into NCR+ ILC3
in the presence of IL-1β plus IL-23 in vitro26,38. In mice,
NCR+ ILC3 generate CD117, CD127 and Nkp46, but
human NCR+ ILC3 instead highly express Nkp44 along-
side a low level of Nkp46. Mouse NCR− ILC3 are identical
to human NCR− ILC3 except that CD117 appears on

Table 1 Characteristics of innate lymphoid cells in mice and human

ILC Group Phenotype Localization Disease Reference

mouse Human

Group1 ILC

NK Cell Lin−, Eomes+,

NK1.1+,NKP46+,

T-bet+, CD90+,

CD127−

Lin−, CD127−, CD117−,

CD25+,CD16+,

CD56+, CD94+,

CD161+

Spleen

Lymph node

Crohn’s disease 23,24,95

Intraepithelial ILC1 Lin-, NK1.1+,

CD103+,CD160+,

CD127−

Lin−, Nkp44+,

CD103+,CD127−,

CD160+, CD94+

Intestine lamina propria,

Intestine epithelial layer

Crohn’s disease

Colitis

25,26,28

Lamina propria ILC1 Lin−, Nkp46+, Tbet+,

CD127+,CD161+
Lin−, CD56−, C-kit−,

Nkp44−, CD127+,

CD161+

Intestine, lamina propria Crohn’s disease

Colitis

12,25–28

Group2 ILC

ILC2 Lin−, CD25+, SCA1+,

ICOS+, ST2+, Thy1+,

IL7Rα+, CD117+

Lin−, CD161+, ST2+,

CRTH2+,CD127+,

NK1.1+,Nkp44−,

CD25+,CD117+,

CD90+

Skin, lung, adipose tissue,

spleen, MLN

Asthma

Allergy

Colitis

14,28,29,96

Group3 ILC

LTi Lin−, CCR6+, CD4+,

CD3−, CD45+,CD90+,

CD117+, CD127+,

IL-23R+

Lin−, CCR6+, CD45+,

CD90+,CD117+,

CD127+, CD4−, CD56−

Lymph node, Peyer’s patches Autoimmune

disease

28,32,33

NCR− ILC3 Lin−, Nkp46−, CD25+,

D90+,CD127+,

CD117−

Lin−, CCR6+, Nkp44−,

CD25+, CD117+,

CD127+, CD161+

Epithelial tissues, Intestine,

Skin

Crohn’s disease

colitis

28,38,41,97

NCR+ ILC3 Lin−, Nkp46+,

CD117+,

CD127+,CD90+

Lin−, CCR6+, Nkp44+,

KP30+, CD117+,

CD127+, CD161+

Epithelial tissues, Intestine

Skin

Colitis 24,28,39–41

Group4 ILC

ILCregs Lin−, CD45+, CD25+,

D90+, CD127+,

IL10+, CD4−, Foxp3−

Lin−, CD45+, CD25+,

CD90+, CD127+,

IL10+,CD4−, Foxp3−

Intestine Colitis 16

Lin− lineage marker-negative, CRTH2 chemoattractant receptor-homologous molecule expressed on TH2 cells, ICOS inducible T cell co-stimulator, CCR CC-chemokine
receptor, SCA-1 stem cells antigen-1, NCR natural cytotoxicity receptor, IL7Rα CD127, MLN mesenteric lymph nodes
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human NCR− ILC3 and not on mouse NCR− ILC339.
NCR+ ILC3 primarily express IL22, but less IL-17. In
contrast, NCR− ILC3 predominantly produce IL-17, but a
lesser amount of IL2240. In vitro, NCR− ILC3 can switch
to NCR+ ILC3 in the presence of IL-1β and IL-2341.
RORγt and AHR are necessary for the development of
CCR6+ and CCR6– ILC3. A knockout of RORγt com-
pletely halts ILC3 formation, rather than that of ILC1 or
ILC2. In addition, AHR highly expresses in ILC3 and is
essential for maintaining ILC342. However, the underlying
mechanisms of ILC3 development and maintenance are
not still elucidated.
Recently, Wang et al. identified a novel subset of ILC,

named regulatory ILC (ILCreg). They found an IL-10-
producing subset of innate cells that mainly presents in
the intestinal tract and expresses various phenotypic ILC
markers, such as CD25, IL-2R, Sca-1 and CD90. Fur-
thermore, these cells express neither CD4 nor FoxP3,
signature markers of CD4+ regulatory T cells (Treg),
which makes ILCreg distinct from Treg. ILCreg are
derived from CHILP instead of ILCP and highly express
the transcriptional factors Id3 and Sox4, lacking other
transcriptional factors that are essential for the develop-
ment of ILC, such as Nfil3, Ror, Gata3 and AHR. ILCreg
play an important role in innate immune responses,
relieving intestine inflammation through generating IL-10
and TGF-β16,43. Interestingly, they resemble lymphoid
cells morphologically with a high nuclear to cytoplasmic
ratio. In addition, another regulatory subset, CD56+CD3−

ILC were recently recognized to display regulatory roles in
human and mice. These cells express NK cell- and ILC-
associated molecules, such as CD56, CD94, NCR3
(NKP30) and NCR1 (NKP46). Like ILCreg, the
CD56+CD3− ILC do not express Foxp3, but highly yield
EOMES, TBX21, GATA3, RORA, and AhR. Dissimilarly,
the CD56+CD3− ILC may originate from NK cells, gen-
erate IL-22 but not IL10, and inhibit tumor-infiltrating
lymphocytes43,44.

ILC3 in the maintenance of gut homeostasis
ILC3 are implicated in gastrointestinal immune

responses. They protect the intestinal mucosa from
infections of various pathogens to maintain intestinal
homeostasis in the steady state. This protective effect is
mainly realized through the secretion of IL22, IL-17 and
GM-CSF, triggering epithelial cells to produce anti-
microbial peptides (AMPs), such as RegIIIβ and RegIIIγ
that kill pathogens45, regulating T cell responses to
commensal bacteria through the expression of a MHC-II
molecule46,47, supporting the tolerance function of
intestinal dendritic cells (DC) via GM-CSF secretion, and
adjusting epithelial glycosylation48.
IL-22, a member of the IL-10 family, displays a homo-

logous secondary structure, binding to its heterodimeric

receptors IL-22R1 and IL-10R2 on the surface of epithelial
cells. IL-22 signaling induces the generation of mucin and
pro-inflammation molecules. It also facilitates tissue
repair through boosting epithelial cell proliferation and
survival49. Besides, IL22 is able to promote the production
of nucleotide oligomerization domain-containing pro-
tein2 (NOD2), which is related to the innate immune
response. The activation of the NOD2 signaling can
promote the secretion of mucin and AMPs protecting
intestinal epithelial cells from invading bacteria50.
Therefore, IL-22 contributes to preventing bacterial
infections, relieving intestinal inflammation and restoring
tissue injury during hepatitis or colitis (Fig. 2a)51. In a
mouse model of graft-vs.-host disease, ILC3-derived IL-22
can activate intestinal stem cells to impede tissue
damage52. In addition, ILC3 triggers intestinal epithelial
fucosyltransferase 2 (Fut2) expression and fucosylation in
mice through secreting IL-22 and lymphotoxin in a
commensal bacteria-dependent or independent manner.
Fut2 regulating H antigen expression in gastrointestinal
mucosa has been reported to mediate the fucosylation of
intestinal epithelial cells53.
Except for IL-22, the NCR− ILC3 can also generate IL-

17. Increasing evidence indicates that it can stimulate
epithelial and endothelial cells to secrete chemokines and
other chemoattractants, and also influence the inflam-
matory immune response by recruiting proinflammatory
neutrophils54. The neutrophils play a protective role in
supporting epithelial barriers and maintaining intestinal
homeostasis through producing ROS and α-defensin
(Fig. 2a). Recent researches demonstrate that γδ T cells
are the source of early and protective IL-17 after an acute
intestinal injury and IL-17 can maintain and protect
epithelial barriers in the intestinal mucosa by regulating
the tight junction protein in an independent-IL-23
manner55.
On the other hand, the interaction between macro-

phages and ILC3 can maintain gut homeostasis via GM-
CSF. RORγt+ ILC3 are an important source of GM-CSF
in the physiological state that relies on microbial signals
and IL-1β production by macrophages48. IL-1β promotes
ILC3 to produce GM-CSF, which initiates the release of
retinoic acid (RA) and IL-10 by DC and macrophages in
the mucosa to facilitate Treg proliferation48. GM-CSF
mediates mononuclear phagocytes (MNP) that are com-
posed of DC and macrophages to keep intestinal Treg
balance (Fig. 2a). Deleting GM-CSF can alter the function
of mononuclear phagocytes, leading to reduced Treg
numbers and broken oral tolerance. CX3CR1+ MNP can
produce IL-23 and IL-1β, dependent upon
MyD88 signaling56. MNP detect microbial signals and
present extracellular antigens to T lymphocytes.
In mice, ILC3 exert a crucial role in gastrointestinal

mucosa immunity by directly promoting epithelial cell
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proliferation, inducing production of anti-inflammatory
cytokines and antimicrobial peptides, preventing dis-
semination of intestinal bacteria, and suppressing CD4+

T-cell responses. Thus, we speculate that ILC3 might have
similar functions in humans. ILC3 interact with CD4+

T cells in maintaining gut homeostasis and in response to
stimuli from commensal bacteria. In fact, ILC3 can
express MHC-II molecules in humans47. In mice, MHC-
II+ ILC3 may present microbiota-derived antigens to
commensal-specific CD4+ T cells (Fig. 2a). These
commensal-specific CD4+ T cells are killed to induce
tolerance to these commensals for lack of the co-
stimulatory molecules CD40, CD80 and CD8646,47.
However, IL-1β stimulates NCR− ILC3 to produce CD80
and CD86 in mouse spleen57. This difference may be due
to the different micro-environments in various tissues.
MHC-II-producing ILC3 are found to regulate intestinal
homeostasis by inducing apoptotic cell death-activated
commensal bacteria-specific T cells47. It has been revealed
that patients with pediatric Crohn’s disease have lower
levels of MHC-II+ ILC3 than individuals without this
condition47. Hence, ILC3 regulate intestinal homeostasis

by a cytokine-dependent pathway and cell surface recep-
tor regulatory mechanisms.
Strikingly, newly found ILCreg participate con-

comitantly in maintenance of gut homeostasis via
secreting IL-10 and TGF-β. ILCreg noticeably inhibit the
production of IFN-γ and IL-17A by ILC1 and NCR−

ILC3, respectively, to reduce their pro-inflammatory
activity, while IL-22 production by NCR+ ILC3 is unaf-
fected by ILCreg. In addition to IL-10, ILCreg can pro-
duce TGF-β1 in an autocrine manner, which supports the
maintenance and proliferation of ILCreg. Therefore, if the
inhibitory action of ILCreg is not enough to offset detri-
mental impacts produced by ILC1 and over-activated
NCR− ILC3 or NCR+ ILC3, inflamed intestinal lesions
occur or are exacerbated.

ILC3 in inflammatory bowel diseases
Using Rag2−/−Tbx21−/− mice (TRUC mice), a mouse

model of UC, Ermann et al. found that IL-23 triggered
secretion of IL-17A by NCR− ILC3 to play a significant
role in the development of colitis58. Recent studies indi-
cate that dysregulation of the IL-23/IL-17 axis is involved

Fig. 2 ILC3 in maintenance of gut homeostasis and occurrence of inflammatory bowel diseases. a Macrophages are stimulated by bacteria,
releasing IL-1β. IL-1β engages an IL-1 receptor on ILC3, promoting IL-22, IL-17 and GM-CSF release. GM-CSF triggers DCs and Macrophages to
generate retinoic acid and IL-10, which in turn promote the formation of Treg cells. IL-22 promotes epithelial barrier integrity and proliferation,
inducing the production of AMPs, REG3γ and mucin. IL-17 can recruit neutrophils and also supports epithelial barrier protection. MHC-II-expressing
ILC3 can inhibit commensal specific CD4+ T cells. NCR- ILC3 can switch to NCR+ ILC3 with IL-1β plus IL-23 stimulation. b In IBD, the number of the
IL-17-producing NCR− ILC3 has been shown to be increased. IL-17 can recruit neutrophil cells. The neutrophil transmigration can disrupt junction
proteins, such as E-cadherin and JAML, leading to the enhancement of epithelial permeability. The increase of the IFNγ-producing ILC1 cells of
intraepithelial ILC1 and CD127+ ILC1 is accompanied by a large decrease in the number of NCR+ ILC3 cells. NCR+ ILC3 produces excessive IL-22 in
IBD. ILC3 can differentiate into ILC1 under the stimulation of IL-12 produced by CD14+ DCs. This ILC3 to ILC1 plasticity is reversible in the presence of
IL-23, IL-1β and retinoic acid produced by CD14− DCs. The population of the IFNγ-producing ILC1 is increased at the cost of the decreased NCR+

ILC3 cells
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in various genetic susceptibilities in CD and UC patients
due to dysfunction of the innate and adaptive immune
responses59. IL-17 also acts on many types of stromal,
epithelial and myeloid cells to generate a great number of
pro-inflammatory cytokines, such as IL-1β, IL-6 and TNF,
and chemokines enlisting neutrophils and macrophages.
Emerging evidence shows that the increased level of
migrating neutrophils can destroy junction proteins, such
as E-cadherin and a junctional adhesion molecule-like
factor, and produce microscopic gaps between epithelial
cells, further impairing the epithelial barrier and exacer-
bating intestinal inflammation in IBD60. Moreover, mas-
sive neutrophil transmigration can alter the cellular
expression levels of tight junction proteins, leading to
injury of the epithelial barrier and enhancement of the
epithelial permeability (Fig. 2b)60. In IBD, the number of
CD68+ macrophages is abnormally increased. In the
mucosa and submucosa, the infiltrating macrophages are
found to express Toll-like receptors, such as TLR-2, TLR-
4 and TLR-561. However, secukinumab, a specific anti-
body against human IL-17A, fails to alleviate CD. On the
contrary, it worsens this disease62 though IL-17A has a
protective effect in the intestinal epithelial permeability55,
suggesting that ILC3 do not impulse the pathological
progress of the inflamed mucosa directly through IL-17A
secretion.
The inappropriate activation of ILC3 has been proven to

cause intestinal damage through excessive production of
IL-22. This may induce epithelial cells to generate neu-
trophil chemoattractants, leading to accumulation of
neutrophils and tissue destruction (Fig. 2b)63. Uhlig et al
found that NKp46+ ILC3 could induce inflammation
through the excessive production of IL-22 and GM-CSF
in the anti-CD40 model of colitis64. Additionally, colonic
ILC3 from UC and CD patients displayed a distinctly
higher expression of IL-22 than in healthy individuals56.
However, IL-22 was reported to have protective effects in
some experimental models of colitis65 and reduced in CD
patients66. In a Th2-mediated chronic colitis model
(TCR□KO mice) representing UC, IL-22 could amelio-
rate intestinal inflammation by enhanced mucus pro-
duction. IL-23-responsive IL-22 was also shown to relieve
colon inflammation in murine colitis induced with dex-
tran sodium sulfate or Citrobacter Rodentium67 and ILC3-
deficient mice generated scant IL-22 to enhance sensi-
tivity to Citrobacter Rodentium68. Niess et al. also found
that the IL-22-deficient mice were highly susceptible to
intestinal inflammation caused by Candidiasis69. Intest-
inal macrophages can accelerate the intestinal inflamma-
tion in CD patients through crosstalk with RORγt ILC3 to
increase the production of IL-22. Another report
demonstrates that CD14+ CX3CR1+ mononuclear pha-
gocytes increase the expression of IL-22 in ILC3 through
producing TL1A, IL-23 and IL-1β. DC are also able to

mediate ILC3 to secrete IL-2256. Emphatically, although
CD103+ DC and CD14+ macrophages may aggravate
intestinal inflammation in CD patients, they are also able
to facilitate a negative feedback pathway via the produc-
tion of IL-22 by ILC370. Collectively, IL-22 is a double-
edged sword in intestinal inflammation and in intestinal
tract protection.
The number of ILC1, especially in the lamina propria, is

greatly increased to about 10–40% of the total ILC in the
inflamed intestinal mucosa in CD patients12,26,27 with
enhancing relative severity of the mucosa inflammation.
The population of the IFNγ-producing ILC1 is increased
at the cost of decreased NCR+ ILC3 in the inflamed
intestine in IBD patients12,26. ILC3 can deviate towards
ILC1 under the stimulation of IL-12 production by
CD14+ DC12, suggesting the imbalance between ILC3 and
ILC1 may result in CD. Bernink and his colleagues
recently revealed that the differentiation of NKp44+ ILC3
to CD127+ ILC1 is reversible, relying on appropriate
assembling of cytokines. For example, ILC1 may deviate
into ILC3 in the presence of IL-23, IL-1β and retinoic acid
produced by CD14− DC12. The differentiation of IL-22-
producing ILC3 into IFNγ-producing ILC1 has been
proven to be highly associated with colitis development in
mice (Fig. 2b). In some inflammatory situations, NKp46+

ILC3 down-regulate RORγt to promote T-bet expression,
becoming a source of IFN-γ71. These cells are designated
as ex-RORγt ILC3, participating in innate immune
defense against infection by Salmonella Thyphymurium30.
ILC2 generating IFN-γ and IL-13 have also been found in
the intestinal tissues of CD patients72, suggesting a certain
plasticity between ILC1 and ILC2 in response to IL-12.
Recently, it has been indicated in Rorα-deficient and
Rorαsg/sg/Rag1−/− mouse models that the Rorα-
dependent ILC3, rather than ILC2, function in the
development of intestinal fibrosis, hinting at a potential
therapeutic target for IBD31. Therefore, azathioprine and
infliximab, an immunosuppressant and an antibody spe-
cific to TNF, respectively, are clinically harnessed to treat
CD patients. A markedly decreased expression of IFN-γ
was indeed observed in the inflamed gut mucosa, sug-
gesting that IFN-γ might be a therapeutic option for CD.
Of note, the CD patients treated with Fontolizumab, a
humanized murine anti-IFN-γ antibody, did not show
statistical efficacy in clinical trials although there was an
improvement in clinical symptoms with a significant
decrease in C-reactive protein levels73. These results
indicate that IBD is a complicated pathological process
mediated by multiple mechanisms. Single therapeutic
strategy will difficultly operate upon this disease.
In the intestinal samples of patients with IBD, Geremia

et al. found that Lin− CD56−CD127+ ILC accumulated in
the inflammatory ileum and colon of CD, but not UC
patients. These cells could express IL17 and IFN-γ to
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respond to IL23 in vitro74. Increased ILC frequencies have
recently been found in patients with primary sclerosing
cholangitis-associated IBD, but not in those with UC75.
Analysis of human tissue samples shows that plasticity
between NCR+ ILC3 and ILC1 subsets is dependent on
the local cytokine environment. The antimicrobial
peptide-secreting-RORgt+NKp44+ ILC3 are trans-
differentiated into ILC1 that produce IFNγ to induce
chronic inflammation in the presence of IL-23 and IL-
1276. This process was observed by the addition of IL-2
and IL-12 to culture fetal intestine NKp44+ ILC3. The
combination of IL-2 with IL-12 rapidly caused the loss of
NKp44 and c-kit expression in fetal intestine NKp44+

ILC3 with the acquirement of ILC1 phenotype26. There-
fore, the population of IFNγ-producing ILC1 is increased
at the cost of decreased NCR+ ILC3 cells in the inflamed
intestine in IBD patients. Human gut ILC3 express not
only a leukemia inhibitory factor (LIF) that stimulates
proliferation of epithelial cells, but also IL-26 that nega-
tively modulates proliferation of intestinal epithelial cells
and facilitates ILC3 to produce proinflammatory TNF and
IL-839. CD14+ DC are source of IL-12 cytokines. They
also secrete IL-22 binding protein that counteracts the
role of IL-2277. These data may reflect ILC3 functional
flexibility. In view of the above findings, Feagan et al.
intravenously administered ustekinumab, a specific anti-
body to the p40 subunit shared by both interleukin-12 and
interleukin-23, to treat patients with moderate to severe
active CD. Consequently, the clinical remission in the
patients was observed and if the ustekinumab was sub-
cutaneously injected at a dose of 90 mg every 8 weeks or
every 12 weeks, this relief could be maintained78, further
supporting that the CD14+ DC-produced IL12 and the
CD14− DC-produced IL-23 indeed play a crucial role in
the process of conversion of NCR+ ILC3 to ILC1.
Last but not least, a relationship of gut microbiota with

IBD is concerned as well. Alteration of gut microbiota is
closely linked to initiation or progression of IBD, but it is
indistinct whether gut microbiota is a primary or sec-
ondary event. It is well known that a mutually beneficial
symbiotic relationship between humans and gut micro-
biota is necessary for maintaining gastrointestinal home-
ostasis. However, intestinal flora is dynamically changing
with age and environmental alteration79. Its composition
and function is affected by various environmental factors,
such as birth, diet, stress, antibiotic treatment and so on80.
Among such environmental factors, diet appears to be an
important modulator of intestinal immunity with direct or
indirect effects on the structure and activity of the
intestinal flora81,82. Short chain fatty acids (SCFA) are
generated by the gut microbiota and regulated by patterns
of food intake. Emerging evidence show that the effect of
SCFA and their metabolite on IBD is mainly modulated
by innate immunity responses and adaptive immune

responses83. For example, Aryl hydrocarbon receptor
(AHR) is present in intestinal epithelium, macrophages, B
cells, T cells and dendritic cells. Kynurenine, an endo-
genous AHR ligand, is derivative of essential amino acid
tryptophan, and many dietary ligands of AHR, including
galangin, genystein, chrysin, apigenin and quercetin,
belong to natural flavonoids residing in fruits and vege-
tables84. It has been proved that the diet-derived AHR
ligands can mediate IL-22 expression to induce the gen-
eration of AMPs and mucin, thus protecting intestinal
mucosa from pathogen invasion and maintaining barrier
integrity85. On the contrary, the expression of innate-
driven IL-22 was reduced for lack of AHR in ILC3, leading
to the expansion of segmented filamentous bacteria with
occurrence of colitis86. Collectively, these studies
demonstrate that AHR acts as a necessary sensor for
environmental factors and human lifestyle factors, such as
diet, and is also essential for maintenance of NKp46+

ILC3 function.
Overall, ILC3 relies primarily on moderate production

of IL-22, GM-CSF and IL-17 secreted by NCR+ ILC3 and
NCR− ILC3, respectively, to mediate the defense to
pathogens. IL-1β and IL-23 with RA are released by
macrophages and DCs under stimulation of microbe,
which might keep the conversion of ILC1 to NCR+

ILC3 subset. The moderate production of IL-22 conduces
to epithelial barrier integrity and proliferation, stimulating
secretion of AMPs, REG3γ and mucin, and enhancing
epithelial fucosylation. Alternatively, IL-17 can recruit
neutrophil cells to support the protection of epithelial
barrier by expression of ROS and α-defensin. GM-CSF
triggers DCs and Macrophages to generate retinoic acid
and IL-10, which facilitate the formation of oral tolerance.
In addition, MHC-II-expressing ILC3 can inhibit com-
mensal specific CD4+ T cells. If intestinal epithelia are
continuously invaded by massive pathogens, IL-22 or IL-
17 is overexpressed by NCR+ ILC3 or NCR− ILC3. They
recruit more neutrophil cells to excessively secrete pro-
inflammatory factors, incurring the swift enhancement of
epithelial cell permeability. Importantly, NCR+ ILC3 can
deviate towards ILC1 under the stimulation of IL-12
generated by CD14+ or CD130+ DC. The IFNγ-
producing intraepithelial ILC1 and CD127+ ILC1 are
largely increased. The excessive production of IFNγ will
result in epithelial cell damage, eventually exacerbating
the inflammatory reaction.

Therapeutic potential of ILC in inflammatory
bowel diseases
As well known, IBD is a chronic non-specific inflam-

matory disease without effective drug treatment. At pre-
sent, medical therapy focuses mainly on usage of anti-
inflammatory drugs, such as thiopurines, mercaptopurine,
5-aminosalicylic acid and methotrexate (Table 2). In
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general, anti-inflammatory drugs are the first clinical
practice in the process of IBD treatment to attenuate
intestinal inflammation, but cause various adverse effects.
Moreover, many patients with IBD do not procure clinical
remission with the treatment of mesalazine, immuno-
suppressant and monoclonal antibodies against inflam-
matory cytokine TNF87. Thus, it is urgent to identify and
develop novel drugs with high efficiency and low toxicity.
Over the past 10 years, ILC have gradually been

recognized to be closely related to the pathogenesis of
IBD and are promising to become an emerging ther-
apeutic target. The transcriptional factor RORγt is

indispensable for the development and differentiation of
ILC3. Withers et al. used Rorcflox and Id2iΔROR-γt mice
with ILC3 deficiency to establish an intestinal inflamma-
tion model through infection with Citrobacter rodentium.
They found that the administered inhibitor of RORγt
(GSK805) observably could relieve inflammation in mice
by preserving ILC3 and limiting Th17 responses. The
treatment of CD with GSK805 did not alter the propor-
tion of ILC3, but reduced the percentage of pro-
inflammatory Th17 and Th22 cells, suggesting that
ROR-γt acts as a therapeutic target for IBD and other
chronic inflammatory diseases88. In another aspect, IL-12

Table 2 Pharmacotherapy for IBD

Drug Target Mechanism Reference

Aminosalicylates (5-aminosalicylates,
Sulphasalazine, Olsalazine)

eIF4b, eIF4e (a) Scavenging reactive oxygen species 98,99

(b) Upregulation of endogenous antioxidant systems

(c) Altering faecal bacteria profiles and exerting anti-inflammatory activities by
inhibition of leukocyte motility

(d) Inhibiting tetrahydrobiopterin biosynthesis and NO formation

(e) Preventing mitochondrial damage by inhibition of phosphatidic acid formation
and phosphatidylethanolamine degradation, and alteration of mitochondrial lipid
composition

(f) Interfering with TNF-α, TGF-β, NF-κB and IL-1

(g) Suppressing the proliferation of human colon cancer cells and by inhibiting
MMP-2 and MMP-9 expression via NF-κB-mediated cell signals and invasiveness

(h) Interacting with the Wnt/β-catenin pathway via inhibition of PP2A and with
the active center of tumor suppressor PPAR-γ

(i) Arresting colon epithelial cells in S-phase by the activation of an ATR-
dependent checkpoint and improving replication fidelity

(j) Down-regulation of expression of endostatin and angiostatin by modulation of
MMP2 and MMP9 via inhibition of TNF-α

Glucocorticoids (Budesonide,
Hydrocortisone, Prednisolone)

undetermined (a) Steroid-activated GR binds to glucocorticoid-responsive elements, resulting in
modulation of antiinflammatory transcriptional pathways such as NF-κB, annexin1
and MAPK.

100

(b) GR can decrease the expression of proinflammatory genes directly by
protein–protein interactions.

(c) Glucocorticoids ameliorate ER stress in intestinal secretory cells by promoting
correct protein folding and enhancing degradation of misfolded proteins.

Immunomodulators (6-mercaptopurine,
azathioprine, methotrexate)

undetermined (a) Formation of thioguanine nucleotides leads to inhibition of DNA, RNA and
protein synthesis, and induction of cytotoxicity and immunosuppression.

101,102

(b) Inducing T cell apoptosis by blockade of Rac1 activation upon CD28 co-
stimulation and suppressing MEK, NF-κB, and bcl-xL

(c) Methotrexate competitively binds to folic acid in combination with
dihydrofolate reductase, interfering with DNA synthesis and leading to cell death.

(d) Decreasing pro-inflammatory cytokine production and induction of
lymphocyte apoptosis

Antibiotics (Flagy, Ciprofloxacin,
Cephalosporins)

undetermined (a) Altering composition of intestinal bacteria, reducing harmful bacteria and
promoting the growth of probiotics to reduce inflammation

103,104

(b) Reducing bacterial invasion of surrounding tissues in the intestinal lumen, and
bacterial migration and systemic dissemination

Biological agents (Infliximab, Adalimumab,
Etanercept)

TNF-α (a) Neutralizing the biological activity of TNFα by binding to the soluble and
transmembrane forms of TNFα with high affinity, preventing it from binding to
cellular receptors and inducing the lysis of cells

105,106

(b) Restoring the gut barrier, preventing leukocyte infiltration in intestinal mucosa
and reducing the expression of β7 and CCR7 in leukocytes, thereby inhibiting
inflammation

(c) Incurring apoptosis of T lymphocytes and mononuclear macrophage

eIF4b eukaryotic translation initiation factor 4B, eIF4e eukaryotic translation initiation factor 4E, NO nitric oxide, NF-κB nuclear factor kappa-light-chain-enhancer of
activated B cells, PPAR-γ peroxisome proliferator activated receptor-γ, MMP-2 metalloproteinases 2, PP2A protein phosphatase 2A, GR glucocorticoid receptor, MAPK
mitogen-activated protein kinase, ER endoplasmic reticulum, Rac1 Ras-related C3 botulinum toxin substrate 1, MEK mitogen-activated protein kinase kinase, bcl-xl B-
cell lymphoma-extra large, CCR7 C-C chemokine receptor type 7
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is implicated in playing a key role in ILC2 and ILC3
plasticity. It is a pro-inflammatory cytokine generated
primarily by antigen presenting cells in answer to bacterial
infection, and accumulated in the inflamed gut mucosa.
Ustekinumab, a human specific antibody against p40, a
subunit shared by both IL-12 and IL-23, can block IL-12
and IL-23 through binding an IL-12 Rβ1 receptor to
relieve inflammation in patients with CD89. It can also
induce and maintain the effects of anti-TNF therapy in
moderate-to-severe CD patients90.
Many clinically used therapeutic agents may affect ILC

differentiation, homeostasis or function. Target cytokine-
cytokine receptors, such as IL-2-IL-2R, IL-12-IL-12R, IL-
23-IL-23R, IL-1-IL-1R, TSLP-TSLPR and IL-6-IL-6R, play
critical roles in the differentiation, function, and main-
tenance of ILCs. Targets 4β7 and MAdCAM-1 are
responsible for the migration of ILCs, and targets TNF-
TNFR and IL-17-IL-17R are implicated in the function of
ILCs91. A developed strategy is to use the cytokines IL-33
or IL-25 to promote an anti-inflammatory ILC2 response,
appearing effective in various chronic preclinical models
of inflammation92. Another potential therapeutic
approach is to facilitate the transition between the ILC1
and ILC3 subpopulations via the cytokines involved in
ILC1/ILC3 plasticity12. In order to selectively regulate
both protective and pathological ILC responses, some
small molecule inhibitors of transcription factors, such as
GSK80588, and other ILC modulators, including the
vitamin A metabolite retinoic acid and Lipoxin A493, are
being developed. In addition, microbes and diet signals
can greatly affect intestinal ILC94, which may also be an
effective strategy to boost protective ILC responses while
potentially limiting pathologic ILC responses.

Conclusions
The detailed etiology and pathogenesis in IBD remain

confused. However, the accumulating data indicate that
the etiology of chronic intestinal inflammation is an
inappropriate immune response to host microorganisms.
Innate and adaptive immune responses may play a key
role in the pathogenesis of IBD. Further evidence strongly
supports that ILC3 maintain micro-environmental
homeostasis of the gastrointestinal mucosa through
moderate production of IL-22, IL-17 and GM-CSF to
protect gut epithelia from microbe invasion in the phy-
siologic state, but also contribute to the evolution and
aggravation of IBD if IL-22 and IL-17 with IFN-γ become
overexpressed due to dysregulation of ILC3 functions and
with their transition towards ILC1 in the pathological
state. Thus, ILC3 appear to be a double-edged sword in
inflammatory bowel diseases. Even so, understanding of
ILC3 is still in its infancy and many problems remain
unclear. Thus, uncovering detailed roles of ILC3 in the
various phases of the inflammatory immune responses is

vital to elucidating the pathological mechanisms of IBD.
The number of IL-17-producing NCR− ILC3 is markedly
increased in IBD. IL-17 can recruit neutrophil cells to
disrupt E-cadherin and JAML, leading to the enhance-
ment of epithelial permeability. IFNγ-producing ILC1 are
enhanced at the cost of decreased NCR+ ILC3 levels.
ILC3 can differentiate into ILC1 under the stimulation of
IL-12 produced by CD14+ DC. This ILC3 to ILC1 plas-
ticity is reversible in the presence of IL-23, IL-1β and
retinoic acid produced by CD14- DC. Hence, the antibody
ustekinumab was conceived to block both IL-12 and IL-23
through binding to an IL-12Rβ1 receptor, ultimately
relieving the clinical manifestation of IBD. However, other
antibodies against human IL-17A or IFN-γ do not show
significant efficacy in the treatment of CD patients, sug-
gesting that the pathogenesis of IBD is highly complicated
and a single therapeutic strategy will have difficulty
operating upon this disease.

Acknowledgements
This project was supported by the National Natural Science Foundation of
China (grant numbers 81172824, 30971465), and Guangzhou City Science and
Technology Program Synergistic Innovation Major Project (grant number:
201604020146) to F.Y. Xing.

Author details
1Institute of Tissue Transplantation and Immunology, Department of
Immunobiology, Jinan University, Guangzhou, China. 2Key Laboratory of
Functional Protein Research of Guangdong, Higher Education Institutes, Jinan
University, Guangzhou, China. 3School of Stomatology, Jinan University,
Guangzhou, China. 4BioMedical Research Centre, University of East Anglia, NR4
7TJ Norwich, UK

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 24 December 2018 Revised: 13 March 2019 Accepted: 19 March
2019

References
1. Segal, J. P. et al. The application of omics techniques to understand the role

of the gut microbiota in inflammatory bowel disease. Therap. Adv. Gastro-
enterol. 12, 1756284818822250 (2019).

2. Axelrad, J. E., Lichtiger, S. & Yajnik, V. Inflammatory bowel disease and cancer:
The role of inflammation, immunosuppression, and cancer treatment. World
J. Gastroenterol. 22, 4794–4801 (2016).

3. Ordas, I., Eckmann, L., Talamini, M., Baumgart, D. C. & Sandborn, W. J.
Ulcerative colitis. Lancet 380, 1606–1619 (2012).

4. Geremia, A., Biancheri, P., Allan, P., Corazza, G. R. & Di Sabatino, A. Innate and
adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 13,
3–10 (2014).

5. Jostins, L. et al. Host-microbe interactions have shaped the genetic archi-
tecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

6. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflam-
matory bowel disease and highlight shared genetic risk across populations.
Nat. Genet. 47, 979–986 (2015).

Zeng et al. Cell Death and Disease          (2019) 10:315 Page 10 of 12

Official journal of the Cell Death Differentiation Association



7. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into
common pathways and complex relationships among immune-mediated
diseases. Nat. Rev. Genet. 14, 661–673 (2013).

8. Ventham, N. T., Kennedy, N. A., Nimmo, E. R. & Satsangi, J. Beyond gene
discovery in inflammatory bowel disease: the emerging role of epigenetics.
Gastroenterology 145, 293–308 (2013).

9. de Lange, K. M. & Barrett, J. C. Understanding inflammatory bowel disease via
immunogenetics. J. Autoimmun. 64, 91–100 (2015).

10. Morita, H., Moro, K. & Koyasu, S. Innate lymphoid cells in allergic and non-
allergic inflammation. J. Allergy Clin. Immunol. 138, 1253–1264 (2016).

11. Ebihara, T. et al. Runx3 specifies lineage commitment of innate lymphoid
cells. Nat. Immunol. 16, 1124–1133 (2015).

12. Bernink, J. H. et al. Interleukin-12 and -23 Control Plasticity of CD127(+)
Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria.
Immunity 43, 146–160 (2015).

13. Spits, H., Bernink, J. H. & Lanier, L. NK cells and type 1 innate lymphoid cells:
partners in host defense. Nat. Immunol. 17, 758–764 (2016).

14. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white
adipose tissue and limit obesity. Nature 519, 242–246 (2015).

15. Atreya, I., Kindermann, M. & Wirtz, S. Innate lymphoid cells in intestinal cancer
development. Semin Immunol, https://doi.org/10.1016/j.smim.2019.02.001
(2019).

16. Wang, S. et al. Regulatory innate lymphoid cells control innate intestinal
inflammation. Cell 171, 201–216 e218 (2017).

17. Withers, D. R. Innate lymphoid cell regulation of adaptive immunity.
Immunology 149, 123–130 (2016).

18. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A
committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

19. Zook, E. C. & Kee, B. L. Development of innate lymphoid cells. Nat. Immunol.
17, 775–782 (2016).

20. van de Pavert, S. A. & Vivier, E. Differentiation and function of group 3 innate
lymphoid cells, from embryo to adult. Int. Immunol. 28, 35–42 (2016).

21. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of
T cells by gamma(c) family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

22. Robinette, M. L. et al. IL-15 sustains IL-7R-independent ILC2 and ILC3
development. Nat. Commun. 8, 14601 (2017).

23. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct
natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med.
211, 563–577 (2014).

24. Yazdani, R., Sharifi, M., Shirvan, A. S., Azizi, G. & Ganjalikhani-Hakemi, M.
Characteristics of innate lymphoid cells (ILCs) and their role in immunological
disorders (an update). Cell Immunol. 298, 66–76 (2015).

25. Klose, C. S. N. et al. Differentiation of type 1 ILCs from a common progenitor
to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

26. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in
inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

27. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique
subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity
38, 769–781 (2013).

28. Bar-Ephraim, Y. E. & Mebius, R. E. Innate lymphoid cells in secondary lym-
phoid organs. Immunol. Rev. 271, 185–199 (2016).

29. Bostick, J. W. & Zhou, L. Innate lymphoid cells in intestinal immunity and
inflammation. Cell. Mol. Life Sci. 73, 237–252 (2016).

30. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6-
RORgammat+ innate lymphoid cells. Nature 494, 261–265 (2013).

31. Lo, B. C. et al. The orphan nuclear receptor RORalpha and group 3 innate
lymphoid cells drive fibrosis in a mouse model of Crohn’s disease. Sci
Immunol 1, eaaf8864 (2016).

32. Buettner, M. & Lochner, M. Development and function of secondary and
tertiary lymphoid organs in the small intestine and the colon. Front. Immunol.
7, 342 (2016).

33. Shiu, J. et al. Gastric LTi cells promote lymphoid follicle formation but are
limited by IRAK-M and do not alter microbial growth. Mucosal Immunol. 8,
1047–1059 (2015).

34. Cording, S. et al. Mouse models for the study of fate and function of innate
lymphoid cells. Eur. J. Immunol. 48, 1271–1280 (2018).

35. Croxatto, D. et al. Group 3 innate lymphoid cells regulate neutrophil
migration and function in human decidua. Mucosal Immunol. 9, 1372–1383
(2016).

36. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis
after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

37. McKenzie, A. N., Spits, H. & Eberl, G. Innate lymphoid cells in inflammation
and immunity. Immunity 41, 366–374 (2014).

38. Cella, M. et al. A human natural killer cell subset provides an innate source of
IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

39. Hazenberg, M. D. & Spits, H. Human innate lymphoid cells. Blood 124,
700–709 (2014).

40. Hoorweg, K. et al. Functional differences between human NKp44(−) and
NKp44(+) RORC(+) innate lymphoid cells. Front. Immunol. 3, 72 (2012).

41. Teunissen, M. B. M. et al. Composition of innate lymphoid cell subsets in the
human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of
psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014).

42. Li, J., Doty, A. & Glover, S. C. Aryl hydrocarbon receptor signaling involves in
the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of
Crohn’s disease patients. Inflamm Cell Signal 3, e1404 (2016).

43. Zeng, B., Shi, S., Liu, J. & Xing, F. Commentary: regulatory innate lymphoid
cells control innate intestinal. Inflamm. Front. Immunol. 9, 1522 (2018).

44. Crome, S. Q. et al. A distinct innate lymphoid cell population regulates
tumor-associated T cells. Nat. Med. 23, 368–375 (2017).

45. Guo, X. et al. Induction of innate lymphoid cell-derived interleukin-22 by the
transcription factor STAT3 mediates protection against intestinal infection.
Immunity 40, 25–39 (2014).

46. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses
to intestinal commensal bacteria. Nature 498, 113–117 (2013).

47. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells
mediate intestinal selection of commensal bacteria-specific CD4(+) T cells.
Science 348, 1031–1035 (2015).

48. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and
ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

49. Yeste, A. et al. IL-21 induces IL-22 production in CD4+ T cells. Nat. Commun.
5, 3753 (2014).

50. Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD
proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol.
14, 9–23 (2014).

51. Martin, J. C. et al. IL-22BP is produced by eosinophils in human gut and
blocks IL-22 protective actions during colitis. Mucosal Immunol. 9, 539–549
(2016).

52. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated
epithelial regeneration. Nature 528, 560–564 (2015).

53. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glyco-
sylation. Science 345, 1254009 (2014).

54. Muir, R. et al. Innate lymphoid cells are the predominant source of IL-17A
during the early pathogenesis of acute respiratory distress syndrome. Am. J.
Respir. Crit. Care. Med. 193, 407–416 (2016).

55. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates
intestinal epithelial permeability. Immunity 43, 727–738 (2015).

56. Longman, R. S. et al. CX(3)CR1(+) mononuclear phagocytes support colitis-
associated innate lymphoid cell production of IL-22. J. Exp. Med. 211,
1571–1583 (2014).

57. von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-
mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840
(2014).

58. Ermann, J., Staton, T., Glickman, J. N., de Waal Malefyt, R. & Glimcher, L. H.
Nod/Ripk2 signaling in dendritic cells activates IL-17A-secreting innate lym-
phoid cells and drives colitis in T-bet-/-.Rag2-/- (TRUC) mice. Proc. Natl Acad.
Sci. USA 111, E2559–2566 (2014).

59. Moschen, A. R., Tilg, H. & Raine, T. IL-12, IL-23 and IL-17 in IBD: immuno-
biology and therapeutic targeting. Nat Rev. Gastroenterol Hepatol 16,
185–196 (2019).

60. Fournier, B. M. & Parkos, C. A. The role of neutrophils during intestinal
inflammation. Mucosal Immunol. 5, 354–366 (2012).

61. Lissner, D. et al. Monocyte and M1 macrophage-induced barrier defect
contributes to chronic intestinal inflammation in IBD. Inflamm. Bowel Dis. 21,
1297–1305 (2015).

62. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody,
for moderate to severe Crohn’s disease: unexpected results of a randomised,
double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

63. Eken, A., Singh, A. K., Treuting, P. M. & Oukka, M. IL-23R+ innate lymphoid
cells induce colitis via interleukin-22-dependent mechanism. Mucosal
Immunol. 7, 143–154 (2014).

64. Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and
systemic innate immune pathology. Immunity 25, 309–318 (2006).

Zeng et al. Cell Death and Disease          (2019) 10:315 Page 11 of 12

Official journal of the Cell Death Differentiation Association

https://doi.org/10.1016/j.smim.2019.02.001


65. Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immu-
nobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

66. Takayama, T. et al. Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+)
natural killer cells in the intestinal mucosa of patients with Crohn’s disease.
Gastroenterology 139, 882–892 (2010). 892 e881–883.

67. Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22
production by gammadelta T cells and innate lymphoid cells and attenua-
tion of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

68. Chen, J., Waddell, A., Lin, Y. D. & Cantorna, M. T. Dysbiosis caused by vitamin
D receptor deficiency confers colonization resistance to Citrobacter roden-
tium through modulation of innate lymphoid cells. Mucosal Immunol. 8,
618–626 (2015).

69. Manta, C. et al. CX(3)CR1(+) macrophages support IL-22 production by
innate lymphoid cells during infection with Citrobacter rodentium. Mucosal
Immunol. 6, 177–188 (2013).

70. Mizuno, S. et al. Cross-talk between RORgammat+ innate lymphoid cells and
intestinal macrophages induces mucosal IL-22 production in Crohn’s disease.
Inflamm. Bowel Dis. 20, 1426–1434 (2014).

71. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORgammat
confers distinct functional fates to NK cell receptor-expressing RORgammat
(+) innate lymphocytes. Immunity 33, 736–751 (2010).

72. Lim, A. I. et al. IL-12 drives functional plasticity of human group 2 innate
lymphoid cells. J. Exp. Med. 213, 569–583 (2016).

73. Peters, C. P., Mjosberg, J. M., Bernink, J. H. & Spits, H. Innate lymphoid cells in
inflammatory bowel diseases. Immunol. Lett. 172, 124–131 (2016).

74. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in
inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

75. Gwela, A. et al. Th1 and innate lymphoid cells accumulate in primary
sclerosing cholangitis-associated inflammatory bowel disease. J. Crohns Colitis
11, 1124–1134 (2017).

76. Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301
(2015).

77. Pelczar, P. et al. A pathogenic role for T cell-derived IL-22BP in inflammatory
bowel disease. Science 354, 358–362 (2016).

78. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for
Crohn’s disease. N. Engl. J. Med. 375, 1946–1960 (2016).

79. Richard, M. L. & Sokol, H. The gut mycobiota: insights into analysis, envir-
onmental interactions and role in gastrointestinal diseases. Nature reviews.
Gastroenterol Hepatol. https://doi.org/10.1038/s41575-019-0121-2 (2019).

80. Levine, A., Sigall Boneh, R. & Wine, E. Evolving role of diet in the pathogenesis
and treatment of inflammatory bowel diseases. Gut 67, 1726–1738 (2018).

81. David, L. A. et al. Diet rapidly and reproducibly alters the human gut
microbiome. Nature 505, 559–563 (2014).

82. Khalili, H. et al. The role of diet in the aetiopathogenesis of inflammatory
bowel disease. Nat Rev Gastroenterol Hepatol 15, 525–535 (2018).

83. Yap, Y. A. & Marino, E. An insight into the intestinal web of mucosal
immunity, microbiota, and diet in inflammation. Front. Immunol. 9, 2617
(2018).

84. Cella, M. & Colonna, M. Aryl hydrocarbon receptor: Linking environment to
immunity. Semin. Immunol. 27, 310–314 (2015).

85. Mizoguchi, A. et al. Clinical importance of IL-22 cascade in IBD. J. Gastro-
enterol. 53, 465–474 (2018).

86. Qiu, J. et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal
inflammation through aryl hydrocarbon receptor signaling and regulation of
microflora. Immunity 39, 386–399 (2013).

87. Lobaton, T., Vermeire, S., Van Assche, G. & Rutgeerts, P. Review article: anti-
adhesion therapies for inflammatory bowel disease. Aliment. Pharmacol. Ther.
39, 579–594 (2014).

88. Withers, D. R. et al. Transient inhibition of ROR-gammat therapeutically limits
intestinal inflammation by reducing TH17 cells and preserving group 3
innate lymphoid cells. Nat. Med. 22, 319–323 (2016).

89. Simon, E. G., Ghosh, S., Iacucci, M. & Moran, G. W. Ustekinumab for the
treatment of Crohn’s disease: can it find its niche? Therap. Adv. Gastroenterol.
9, 26–36 (2016).

90. Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in
refractory Crohn’s disease. N. Engl. J. Med. 367, 1519–1528 (2012).

91. Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation
and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

92. Xiong, T. & Turner, J. E. Innate lymphoid cells in autoimmunity and chronic
inflammatory diseases. Semin. Immunopathol. 40, 393–406 (2018).

93. van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid
cells and set the offspring immunity. Nature 508, 123–127 (2014).

94. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a
micronutrient deficiency promotes type 2 barrier immunity. Science 343,
432–437 (2014).

95. Seillet, C., Belz, G. T. & Huntington, N. D. Development, homeostasis, and
heterogeneity of NK cells and ILC1. Curr. Top. Microbiol. Immunol. 395, 37–61
(2016).

96. Huang, Y. & Paul, W. E. Inflammatory group 2 innate lymphoid cells. Int.
Immunol. 28, 23–28 (2016).

97. Melo-Gonzalez, F. & Hepworth, M. R. Functional and phenotypic
heterogeneity of group 3 innate lymphoid cells. Immunology 150, 265–275
(2017).

98. Campregher, C. & Gasche, C. Aminosalicylates. Best. Pract. Res. Clin. Gastro-
enterol. 25, 535–546 (2011).

99. Deng, X. et al. Mesalamine restores angiogenic balance in experimental
ulcerative colitis by reducing expression of endostatin and angiostatin: novel
molecular mechanism for therapeutic action of mesalamine. J. Pharmacol.
Exp. Ther. 331, 1071–1078 (2009).

100. Das, I. et al. Glucocorticoids alleviate intestinal ER stress by enhancing protein
folding and degradation of misfolded proteins. J. Exp. Med. 210, 1201–1216
(2013).

101. Stocco, G. et al. Thiopurine metabolites variations during co-treatment
with aminosalicylates for inflammatory bowel disease: effect of
N-acetyl transferase polymorphisms. World J. Gastroenterol. 21, 3571–3578
(2015).

102. Tiede, I. et al. CD28-dependent Rac1 activation is the molecular target of
azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest. 111,
1133–1145 (2003).

103. Khan, K. J. et al. Antibiotic therapy in inflammatory bowel disease: a
systematic review and meta-analysis. Am. J. Gastroenterol. 106, 661–673
(2011).

104. Cammarota, G. et al. The involvement of gut microbiota in inflammatory
bowel disease pathogenesis: potential for therapy. Pharmacol. Ther. 149,
191–212 (2015).

105. Lichtenstein, L. et al. Infliximab-related infusion reactions: systematic review. J.
Crohns Colitis 9, 806–815 (2015).

106. Peake, S. T. et al. Infliximab induces a dysregulated tissue-homing profile on
human T-lymphocytes in-vitro: a novel mechanism for paradoxical inflam-
mation? J. Crohns Colitis 7, 765–767 (2013).

Zeng et al. Cell Death and Disease          (2019) 10:315 Page 12 of 12

Official journal of the Cell Death Differentiation Association

https://doi.org/10.1038/s41575-019-0121-2

	ILC3 function as a double-edged sword in�inflammatory bowel diseases
	Facts
	Open questions
	Introduction
	Innate lymphoid cells
	ILC3 in the maintenance of gut homeostasis
	ILC3 in inflammatory bowel diseases
	Therapeutic potential of ILC in inflammatory bowel diseases
	Conclusions
	ACKNOWLEDGMENTS




