35 research outputs found

    Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda

    Get PDF
    BACKGROUND: Parasite-based diagnosis of malaria by microscopy requires laboratory skills that are generally unavailable at peripheral health facilities. Rapid diagnostic tests (RDTs) require less expertise, but accuracy under operational conditions has not been fully evaluated in Uganda. There are also concerns about RDTs that use the antigen histidine-rich protein 2 (HRP2) to detect Plasmodium falciparum, because this antigen can persist after effective treatment, giving false positive test results in the absence of infection. An assessment of the accuracy of Malaria Pf immuno-chromatographic test (ICT) and description of persistent antigenicity of HRP2 RDTs was undertaken in a hyperendemic area of Uganda. METHODS: Using a cross-sectional design, a total of 357 febrile patients of all ages were tested using ICT, and compared to microscopy as the gold standard reference. Two independent RDT readings were used to assess accuracy and inter-observer reliability. With a longitudinal design to describe persistent antigenicity of ICT and Paracheck, 224 children aged 6-59 months were followed up at 7-day intervals until the HRP2 antigens where undetectable by the RDTs. RESULTS: Of the 357 patients tested during the cross-sectional component, 40% (139) had positive blood smears for asexual forms of P. falciparum. ICT had an overall sensitivity of 98%, a specificity of 72%, a negative predictive value (NPV) of 98% and a positive predictive value (PPV) of 69%. ICT showed a high inter-observer reliability under operational conditions, with 95% of readings having assigned the same results (kappa statistics 0.921, p 50,000/microl, the mean duration of persistent antigenicity was 37 days compared to 26 days for parasitaemia less than 1,000/microl (log rank 21.9, p < 0.001). CONCLUSION: ICT is an accurate and appropriate test for operational use as a diagnostic tool where microscopy is unavailable. However, persistent antigenicity reduces the accuracy of this and other HRP2-based RDTs. The low specificity continues to be of concern, especially in children below five years of age. These pose limitations that need consideration, such as their use for diagnosis of patients returning with symptoms within two to four weeks of treatment. Good clinical skills are essential to interpret test results

    Myocardial Inflammation—Are We There Yet?

    Get PDF
    Several exogenous or endogenous factors can lead to inflammatory heart disease. Beside infectious myocarditis, other systemic inflammatory disorders such as sarcoidosis, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Churg-Strauss syndrome, and rheumatoid arthritis can affect the myocardium. Myocardial inflammation may have a major impact on the outcome of these patients, resulting in sudden cardiac death, severe arrhythmias, or end-stage heart failure. The current gold standard for definite confirmation of inflammatory heart disease is endomyocardial biopsy (EMB), but is invasive and suffers low sensitivity and specificity due to sampling errors. Thus, non-invasive methods for detecting the extent and changes over time of the inflammatory myocardial disease are needed. Cardiac magnetic resonance (CMR) is such a non-invasive method. We will describe and discuss different approaches for CMR assessment of inflammatory myocardial disease including early gadolinium enhancement (EGE), T2-weighted imaging, late gadolinium enhancement (LGE), the newer mapping proton relaxation techniques (T1 pre-contrast, T1 post-contrast, T2 mapping), and the hybrid PET/MRI technique

    The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    Full text link

    Science and culture around the Montessori's first “Children's Houses” in Rome (1907-1915)

    No full text
    Between 1907 and 1908, Maria Montessori's (1870-1952) educational method was elaborated at the Children's Houses of the San Lorenzo district in Rome. This pioneering experience was the basis for the international fame that came to Montessori after the publication of her 1909 volume dedicated to her "Method." The "Montessori Method" was considered by some to be scientific, liberal, and revolutionary. The present article focuses upon the complex contexts of the method's elaboration. It shows how the Children's Houses developed in relation to a particular scientific and cultural eclecticism. It describes the factors that both favored and hindered the method's elaboration, by paying attention to the complex network of social, institutional, and scientific relationships revolving around the figure of Maria Montessori. A number of "contradictory" dimensions of Montessori's experience are also examined with a view to helping to revise her myth and offering the image of a scholar who was a real early-twentieth-century prototype of a "multiple" behavioral scientist. (C) 2008 Wiley Periodicals, Inc

    Structural and dynamical insights on HLA-DR2 complexes that confer susceptibility to multiple sclerosis in Sardinia: a molecular dynamics simulation study

    Get PDF
    Sardinia is a major Island in the Mediterranean with a high incidence of multiple sclerosis, a chronic autoimmune inflammatory disease of the central nervous system. Disease susceptibility in Sardinian population has been associated with five alleles of major histocompatibility complex (MHC) class II DRB1 gene. We performed 120 ns of molecular dynamics simulation on one predisposing and one protective alleles, unbound and in complex with the two relevant peptides: Myelin Basic Protein and Epstein Barr Virus derived peptide. In particular we focused on the MHC peptide binding groove dynamics. The predisposing allele was found to form a stable complex with both the peptides, while the protective allele displayed stability only when bound with myelin peptide. The local flexibility of the MHC was probed dividing the binding groove into four compartments covering the well known peptide anchoring pockets. The predisposing allele in the first half cleft exhibits a narrower and more rigid groove conformation in the presence of myelin peptide. The protective allele shows a similar behavior, while in the second half cleft it displays a narrower and more flexible groove conformation in the presence of viral peptide. We further characterized these dynamical differences by evaluating H-bonds, hydrophobic and stacking interaction networks, finding striking similarities with super-type patterns emerging in other autoimmune diseases. The protective allele shows a defined preferential binding to myelin peptide, as confirmed by binding free energy calculations. All together, we believe the presented molecular analysis could help to design experimental assays, supports the molecular mimicry hypothesis and suggests that propensity to multiple sclerosis in Sardinia could be partly linked to distinct peptide-MHC interaction and binding characteristics of the antigen presentation mechanism
    corecore