27 research outputs found

    Flagellar synchronization through direct hydrodynamic interactions

    Get PDF
    This is the final version of the article. Available from eLife Sciences Publications via the DOI in this recordFlows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.Funding. European Research Council (Advanced Investigator Grant 247333): Douglas R Brumley, Kirsty Y Wan, Marco Polin, Raymond E Goldstein. Wellcome Trust (Senior Investigator Award): Douglas R Brumley, Kirsty Y Wan, Raymond E Goldstein. Engineering and Physical Sciences Research Council: Kirsty Y Wan, Marco Polin, Raymond E Goldstein. Human Frontier Science Program: Douglas R Brumle

    Long-range interactions, wobbles, and phase defects in chains of model cilia

    Get PDF
    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.Human Frontier Science Program; Wellcome Trust; EU ERC CoG Hydrosyn

    Squirmers with swirl: a model for Volvox swimming.

    Get PDF
    Colonies of the green alga Volvox are spheres that swim through the beating of pairs of flagella on their surface somatic cells. The somatic cells themselves are mounted rigidly in a polymeric extracellular matrix, fixing the orientation of the flagella so that they beat approximately in a meridional plane, with axis of symmetry in the swimming direction, but with a roughly [Formula: see text] azimuthal offset which results in the eponymous rotation of the colonies about a body-fixed axis. Experiments on colonies of Volvox carteri held stationary on a micropipette show that the beating pattern takes the form of a symplectic metachronal wave (Brumley et al. Phys. Rev. Lett., vol. 109, 2012, 268102). Here we extend the Lighthill/Blake axisymmetric, Stokes-flow model of a free-swimming spherical squirmer (Lighthill Commun. Pure Appl. Maths, vol. 5, 1952, pp. 109-118; Blake J. Fluid Mech., vol. 46, 1971b, pp. 199-208) to include azimuthal swirl. The measured kinematics of the metachronal wave for 60 different colonies are used to calculate the coefficients in the eigenfunction expansions and hence predict the mean swimming speeds and rotation rates, proportional to the square of the beating amplitude, as functions of colony radius. As a test of the squirmer model, the results are compared with measurements (Drescher et al. Phys. Rev. Lett., vol. 102, 2009, 168101) of the mean swimming speeds and angular velocities of a different set of 220 colonies, also given as functions of colony radius. The predicted variation with radius is qualitatively correct, but the model underestimates both the mean swimming speed and the mean angular velocity unless the amplitude of the flagellar beat is taken to be larger than previously thought. The reasons for this discrepancy are discussed.This work was supported by a Human Frontier Science Program Cross-Disciplinary Fellowship (D.R.B.) and a Senior Investigator Award from the Wellcome Trust (R.E.G.).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Cambridge Univeristy Press

    Exploring the pastiche hegemony of men

    Get PDF
    In this article I explore the continued hegemony of certain men. I use interview extracts to help think through the notion of pastiche hegemony as a means of understanding how men, and narratives about them, have changed, but unequal power relations persist. In particular, I explore this process within men’s understandings of how they were able to gain and maintain influence and power at work. Through their reflexive reading of the changing shape of late modern Western society, these men believed they were able to craft selves and employ social scripts to produce social influence and power in situational and contingent forms. I argue that it is within this interactional process that the increasingly undermined ideological and material legacy of patriarchy might still be reified. As such, while there is clear evidence highlighting the undermining of men’s ability to assume power, within this article I theoretically unpack how certain men might be able to produce a localized, pastiche hegemony. This article is published as part of a thematic collection on gender studies

    Phase Synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators

    Get PDF
    Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations

    A bait-trap assay to characterize soil microbes that exhibit chemotaxis to root exudates

    No full text
    Here, we describe a novel "bait-trap" assay, which facilitates capture of soil microorganisms that exhibit chemotaxis to chemical attractants, such as root exudates. These multi-population assemblages represent potential guilds and can be characterized using a wide-range of culture-dependent and culture-independent methods. While in this example, we use root exudates as bait, any water-soluble compound(s) could be used. Hence, the potential applications for the assay are diverse
    corecore