17,758 research outputs found

    Total coloring of 1-toroidal graphs of maximum degree at least 11 and no adjacent triangles

    Full text link
    A {\em total coloring} of a graph GG is an assignment of colors to the vertices and the edges of GG such that every pair of adjacent/incident elements receive distinct colors. The {\em total chromatic number} of a graph GG, denoted by \chiup''(G), is the minimum number of colors in a total coloring of GG. The well-known Total Coloring Conjecture (TCC) says that every graph with maximum degree Δ\Delta admits a total coloring with at most Δ+2\Delta + 2 colors. A graph is {\em 11-toroidal} if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 11-toroidal graphs, and prove that the TCC holds for the 11-toroidal graphs with maximum degree at least~1111 and some restrictions on the triangles. Consequently, if GG is a 11-toroidal graph with maximum degree Δ\Delta at least~1111 and without adjacent triangles, then GG admits a total coloring with at most Δ+2\Delta + 2 colors.Comment: 10 page

    Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam) via organogenesis

    Get PDF
    An efficient and rapid Agrobacterium-mediated transformation method based on de novo (via callus) organogenesis has been developed from petioles with leaf for sweetpotato (Ipomoea batatas (L.) Lam). Stable transgenic sweetpotato plants cv. Jewel were obtained in six to ten weeks after infection with Agrobacterium tumefaciens hyper-virulent strain EHA105 harboring a binary vector pCIP45 bearing the nptII gene conferring resistance to kanamycin and a gene of interest. PCR and Southern analyses confirmed stable integration of both genes into the sweetpotato genome. The expression of the nptII gene was assessed by reverse-transcribed PCR and callus development in a high kanamycin medium. A two-step organogenesis regeneration using media containing 4-fluorophenoxyacetic acid (4-FA) and zeatin was used in two independent transformation experiments yielding 20% and 10% transformation efficiency, respectively. When using indolacetic acid (IAA) in regeneration media, the transformation efficiency dropped to 4.0%. It indicated an auxin to cytokinin treatment could improve the regeneration of transgenic calluses. This rapid organogenesis-based transformation strategy represents an important improvement over existing methods and will facilitate producing large-scale transgenic sweetpotato plants the genetic improvement of a crop that is reputed to be difficult to transform

    Balanced geological section for extensional tectonic basin and its implication: An example from southern Songliao Basin

    Get PDF
    挤压构造的平衡地质剖面分析已经广泛应用于造山带构造分析, 但伸展构造区的平衡地质剖面分析实例仍然很少. 运用盆地分析的技术与方法, 分层序或阶段将地质构造依次恢复、地层逐层回剥, 并通过在松辽盆地南部吉林两井油田扶余油层4 条剖面的实践, 复原出不同时代盆地构造与地层发育的连续剖面, 揭示出松辽盆地南部主要构造样式是以浅表构造层次的负花状构造及深层剥离断层发育为特征; 断层生长指数、盆地的伸展史和伸展量等参数显示, 晚白垩世是构造转型的重要阶段, 此前主要为走滑构造样式形成阶段, 此后则主要为伸展滑脱构造发育阶段. 在此基础上, 提出松辽盆地具有伸展- 走滑双重力学构造性质, 可能是一个弧后构造盆地.The balanced geological sect ion has been widely used for the analysis of orogenic belt, but it is infrequent for ex tensional basins. In this paper, 4 extensional balanced geological sect ion analysis were practiced in Fuyu oil layer of Liangjing , Jilin oilfield, southern Songliao basin with the technology and method, including deformation history restoration, decompaction and erosion restoration. The structure of different ages and the continuous sedimentary sections have been restored. T he result s show that the structural styles possess the characteristics of negative flower structure in the shallow level and ex tensional detachment in deep level. The parameters, including fault growth index, the basin ex tensional history and fault detachment depth, indicate that Late Cretaceous is an important stage for the structure transferring mainly with a strike-slip style before this time and an ex tensional structure and detachment after this time. Therefore, a basin model with twin dynamic property and back-arc characters is proposed.published_or_final_versio

    A guide to integrating immunohistochemistry and chemical imaging

    Full text link
    © 2018 The Royal Society of Chemistry. Chemical imaging provides new insight into the fundamental atomic, molecular, and biochemical composition of tissue and how they are interrelated in normal physiology. Visualising and quantifying products of pathogenic reactions long before structural changes become apparent also adds a new dimension to understanding disease pathogenesis. While chemical imaging in isolation is somewhat limited by the nature of information it can provide (e.g. peptides, metals, lipids, or functional groups), integrating immunohistochemistry allows simultaneous, targeted imaging of biomolecules while also mapping tissue composition. Together, this approach can provide invaluable information on the inner workings of the cell and the molecular basis of diseases

    Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT-ZnO Heterostructures.

    Get PDF
    In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL) measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT-inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Impact of inhaled corticosteroids on growth in children with asthma: systematic review and meta-analysis

    Get PDF
    Background: Long-term inhaled corticosteroids (ICS) may reduce growth velocity and final height of children with asthma. We aimed to evaluate the association between ICS use of >12 months and growth. Methods: We initially searched MEDLINE and EMBASE in July 2013, followed by a PubMed search updated to December 2014. We selected RCTs and controlled observational studies of ICS use in patients with asthma. We conducted random effects meta-analysis of mean differences in growth velocity (cm/year) or final height (cm) between groups. Heterogeneity was assessed using the I2 statistic. Results: We found 23 relevant studies (twenty RCTs and three observational studies) after screening 1882 hits. Meta-analysis of 16 RCTs showed that ICS use significantly reduced growth velocity at one year follow-up (mean difference -0.48 cm/year (95% CI -0.66 to -0.29)). There was evidence of a dose-response effect in three RCTs. Final adult height showed a mean reduction of -1.20 cm (95% CI -1.90 cm to -0.50 cm) with budesonide versus placebo in a high quality RCT. Meta-analysis of two lower quality observational studies revealed uncertainty in the association between ICS use and final adult height, pooled mean difference -0.85 cm (95% CI -3.35 to 1.65). Conclusion: Use of ICS for >12 months in children with asthma has a limited impact on annual growth velocity. In ICS users, there is a slight reduction of about a centimeter in final adult height, which when interpreted in the context of average adult height in England (175 cm for men and 161 cm for women), represents a 0.7% reduction compared to non-ICS users

    Recombining your way out of trouble: The genetic architecture of hybrid fitness under environmental stress

    Get PDF
    Hybridization between species can either promote or impede adaptation. But there is a deficit in our understanding of the genetic basis of hybrid fitness, especially in non-domesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between non-homologous chromosomes) and 4) ploidy. We used linear mixed effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype-environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations
    corecore