57 research outputs found

    Internal Jugular Vein Cross-Sectional Area Enlargement Is Associated with Aging in Healthy Individuals.

    Get PDF
    Internal jugular vein (IJV) narrowing has been implicated in central nervous system pathologies, however normal physiological age- and gender-related IJV variance in healthy individuals (HIs) has not been adequately assessed.We assessed the relationship between IJV cross-sectional area (CSA) and aging.This study involved 193 HIs (63 males and 130 females) who received 2-dimensional magnetic resonance venography at 3T. The minimum CSA of the IJVs at cervical levels C2/C3, C4, C5/C6, and C7/T1 was obtained using a semi-automated contouring-thresholding technique. Subjects were grouped by decade. Pearson and partial correlation (controlled for cardiovascular risk factors, including hypertension, heart disease, smoking and body mass index) and analysis of variance analyses were used, with paired t-tests comparing side differences.Mean right IJV CSA ranges were: in males, 41.6 mm2 (C2/C3) to 82.0 mm2 (C7/T1); in females, 38.0 mm2 (C2/C3) to 62.3 mm2 (C7/T1), while the equivalent left side ranges were: in males, 28.0 mm2 (C2/C3) to 52.2 mm2 (C7/T1); in females, 27.2 mm2 (C2/C3) to 47.8 mm2 (C7/T1). The CSA of the right IJVs was significantly larger (p<0.001) than the left at all cervical levels. Controlling for cardiovascular risk factors, the correlation between age and IJV CSA was more robust in males than in the females for all cervical levels.In HIs age, gender, hand side and cervical location all affect IJV CSA. These findings suggest that any definition of IJV stenosis needs to account for these factors

    Internal Jugular Vein Cross-Sectional Area and Cerebrospinal Fluid Pulsatility in the Aqueduct of Sylvius: A Comparative Study between Healthy Subjects and Multiple Sclerosis Patients

    Get PDF
    Objectives Constricted cerebral venous outflow has been linked with increased cerebrospinal fluid (CSF) pulsatility in the aqueduct of Sylvius in multiple sclerosis (MS) patients and healthy individuals. This study investigates the relationship between CSF pulsatility and internal jugular vein (IJV) cross-sectional area (CSA) in these two groups, something previously unknown. Methods 65 relapsing-remitting MS patients (50.8% female; mean age = 43.8 years) and 74 healthy controls (HCs) (54.1% female; mean age = 43.9 years) were investigated. CSF flow quantification was performed on cine phase-contrast MRI, while IJV-CSA was calculated using magnetic resonance venography. Statistical analysis involved correlation, and partial least squares correlation analysis (PLSCA). Results PLSCA revealed a significant difference (p<0.001; effect size = 1.072) between MS patients and HCs in the positive relationship between CSF pulsatility and IJV-CSA at C5-T1, something not detected at C2-C4. Controlling for age and cardiovascular risk factors, statistical trends were identified in HCs between: increased net positive CSF flow (NPF) and increased IJV-CSA at C5-C6 (left: r = 0.374, p = 0.016; right: r = 0.364, p = 0.019) and C4 (left: r = 0.361, p = 0.020); and increased net negative CSF flow and increased left IJV-CSA at C5-C6 (r = -0.348, p = 0.026) and C4 (r = -0.324, p = 0.039), whereas in MS patients a trend was only identified between increased NPF and increased left IJV-CSA at C5-C6 (r = 0.351, p = 0.021). Overall, correlations were weaker in MS patients (p = 0.015). Conclusions In healthy adults, increased CSF pulsatility is associated with increased IJV-CSA in the lower cervix (independent of age and cardiovascular risk factors), suggesting a biomechanical link between the two. This relationship is altered in MS patients

    Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta

    Get PDF
    Context: Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective: We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors-preeclampsia serum or hypoxic placental conditioned medium- in a fashion reversed by vitamin D. Design, Setting, Patients: ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures: ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results: 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion: Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. © 2014 Brodowski et al

    Sexual dimorphism in cancer.

    Get PDF
    The incidence of many types of cancer arising in organs with non-reproductive functions is significantly higher in male populations than in female populations, with associated differences in survival. Occupational and/or behavioural factors are well-known underlying determinants. However, cellular and molecular differences between the two sexes are also likely to be important. In this Opinion article, we focus on the complex interplay that sex hormones and sex chromosomes can have in intrinsic control of cancer-initiating cell populations, the tumour microenvironment and systemic determinants of cancer development, such as the immune system and metabolism. A better appreciation of these differences between the two sexes could be of substantial value for cancer prevention as well as treatment

    Quantification of Circulating Endothelial Progenitor Cells Using the Modified ISHAGE Protocol

    Get PDF
    Circulating endothelial progenitor cells (EPC), involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data.In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS)), EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45(dim)CD34(+) cells were quantified for KDR. A minimum of 100 CD34(+) events were collected. For comparison, CD45(+)CD34(+) and CD45(-)CD34(+) were analysed simultaneously. The number of CD45(dim)CD34(+)KDR(+) cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend). An inverse correlation of CD45(dim)CD34(+)KDR(+) with disease activity (r = -0.475, p<0.001) was confirmed. Only CD45(dim)CD34(+)KDR(+) correlated inversely with the number of diseased coronaries (r = -0.344; p<0.005). In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45(dim)CD34(+)KDR(+) EPC (p<0.05). CD45(+)CD34(+)KDR(+) and CD45(-)CD34(+)KDR(+) were indifferent between the three groups.Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in EPC enumeration confirming previous findings with respect to the correlation of EPC with disease activity and the increase of EPC during statin therapy. The data of this study show the CD45(dim) fraction to harbour EPC

    Influence of the oxygen microenvironment on the proangiogenic potential of human endothelial colony forming cells

    Get PDF
    Therapeutic angiogenesis is a promising strategy to promote the formation of new or collateral vessels for tissue regeneration and repair. Since changes in tissue oxygen concentrations are known to stimulate numerous cell functions, these studies have focused on the oxygen microenvironment and its role on the angiogenic potential of endothelial cells. We analyzed the proangiogenic potential of human endothelial colony-forming cells (hECFCs), a highly proliferative population of circulating endothelial progenitor cells, and compared outcomes to human dermal microvascular cells (HMVECs) under oxygen tensions ranging from 1% to 21% O2, representative of ischemic or healthy tissues and standard culture conditions. Compared to HMVECs, hECFCs (1) exhibited significantly greater proliferation in both ischemic conditions and ambient air; (2) demonstrated increased migration compared to HMVECs when exposed to chemotactic gradients in reduced oxygen; and (3) exhibited comparable or superior proangiogenic potential in reduced oxygen conditions when assessed using a vessel-forming assay. These data demonstrate that the angiogenic potential of both endothelial populations is influenced by the local oxygen microenvironment. However, hECFCs exhibit a robust angiogenic potential in oxygen conditions representative of physiologic, ischemic, or ambient air conditions, and these findings suggest that hECFCs may be a superior cell source for use in cell-based approaches for the neovascularization of ischemic or engineered tissues

    Comparison between Culture Conditions Improving Growth and Differentiation of Blood and Bone Marrow Cells Committed to the Endothelial Cell Lineage

    Get PDF
    The aim of this study was to compare different cell sources and culture conditions to obtain endothelial progenitor cells (EPCs) with predictable antigen pattern, proliferation potential and in vitro vasculogenesis. Pig mononuclear cells were isolated from blood (PBMCs) and bone marrow (BMMCs). Mesenchymal stem cells (MSCs) were also derived from pig bone marrow. Cells were cultured on fibronectin in the presence of a high concentration of VEGF and low IGF-1 and FGF-2 levels, or on gelatin with a lower amount of VEGF and higher IGF-1 and FGF-2 concentrations. Endothelial commitment was relieved in almost all PBMCs and BMMCs irrespective of the protocol used, whilst MSCs did not express a reliable pattern of EPC markers under these conditions. BMMCs were more prone to expand on gelatin and showed a better viability than PBMCs. Moreover, about 90% of the BMMCs pre-cultured on gelatin could adhere to a hyaluronan-based scaffold and proliferate on it up to 3 days. Pre-treatment of BMMCs on fibronectin generated well-shaped tubular structures on Matrigel, whilst BMMCs exposed to the gelatin culture condition were less prone to form vessel-like structures. MSCs formed rough tubule-like structures, irrespective of the differentiating condition used. In a relative short time, pig BMMCs could be expanded on gelatin better than PBMCs, in the presence of a low amount of VEGF. BMMCs could better specialize for capillary formation in the presence of fibronectin and an elevated concentration of VEGF, whilst pig MSCs anyway showed a limited capability to differentiate into the endothelial cell lineage

    Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension

    Get PDF
    Background Pulmonary vasodilators in general and prostacyclin therapy in particular, have markedly improved the outcome of patients with pulmonary arterial hypertension (PAH). As endothelial dysfunction is a key feature of PAH, and as endothelial progenitor cells (EPC) may contribute to vascular repair in PAH, we suspected that prostacyclin therapy might enhance EPC numbers and functions. In the present study, objectives were to determine whether EPC may contribute to vasodilator treatment efficacy in PAH. Methods We quantified CD34+ cells, CFU-Hill and ECFC (endothelial colony forming cells) in peripheral blood from children with idiopathic PAH (n = 27) or PAH secondary to congenital heart disease (n = 52). CD34+ were enumerated by flow cytometry, CFU-Hill and ECFC by a culture assay. ECFC grown ex vivo were tested for their angiogenic capacities before and after prostacyclin analog therapy (subcutaneous treprostinil). Results ECFC counts were significantly enhanced in the 8 children treated with treprostinil, while no change was observed in children receiving oral therapy with endothelin antagonists and/or PDE5 inhibitors. CD34+ cell and CFU-Hill counts were unaffected. ECFC from patients treated with treprostinil had a hyperproliferative phenotype and showed enhanced angiogenic potential in a nude mouse preclinical model of limb ischemia. Conclusions ECFC may partly mediate the clinical benefits of prostanoids in pulmonary arterial hypertension

    Influence of androgen receptor in vascular cells on reperfusion following hindlimb ischaemia

    Get PDF
    AIMS:Studies in global androgen receptor knockout (G-ARKO) and orchidectomised mice suggest that androgen accelerates reperfusion of the ischaemic hindlimb by stimulating angiogenesis. This investigation used novel, vascular cell-specific ARKO mice to address the hypothesis that the impaired hindlimb reperfusion in G-ARKO mice was due to loss of AR from cells in the vascular wall. METHODS AND RESULTS:Mice with selective deletion of AR (ARKO) from vascular smooth muscle cells (SM-ARKO), endothelial cells (VE-ARKO), or both (SM/VE-ARKO) were compared with wild type (WT) controls. Hindlimb ischaemia was induced in these mice by ligation and removal of the femoral artery. Post-operative reperfusion was reduced in SM-ARKO and SM/VE-ARKO mice. Immunohistochemistry indicated that this was accompanied by a reduced density of smooth muscle actin-positive vessels but no change in the density of isolectin B4-positive vessels in the gastrocnemius muscle. Deletion of AR from the endothelium (VE-ARKO) did not alter post-operative reperfusion or vessel density. In an ex vivo (aortic ring culture) model of angiogenesis, AR was not detected in vascular outgrowths and angiogenesis was not altered by vascular ARKO or by exposure to dihydrotestosterone (DHT 10(-10)-10(-7)M; 6 days). CONCLUSION:These results suggest that loss of AR from vascular smooth muscle, but not from the endothelium, contributes to impaired reperfusion in the ischaemic hindlimb of G-ARKO. Impaired reperfusion was associated with reduced collateral formation rather than reduced angiogenesis
    corecore