46 research outputs found
Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability
This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe
Power allocation strategies for distributed precoded multicell based systems
Multicell cooperation is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness, and increase capacity. In this article, we propose power allocation techniques for the downlink of distributed, precoded, multicell cellular-based systems. The precoder is designed in two phases: first the intercell interference is removed by applying a set of distributed precoding vectors; then the system is further optimized through power allocation. Three centralized power allocation algorithms with per-BS power constraint and diferente complexity trade-offs are proposed: one optimal in terms of minimization of the instantaneous average bit error rate (BER), and two suboptimal. In this latter approach, the powers are computed in two phases. First, the powers are derived under total power constraint (TPC) and two criterions are considered, namely, minimization of the instantaneous average BER and minimization of the sum of inverse of signal-to-noise ratio. Then, the final powers are computed to satisfy the individual per-BS power constraint. The performance of the proposed schemes is evaluated, considering typical pedestrian scenarios based on LTE specifications. The numerical results show that the proposed suboptimal schemes achieve a performance very close to the optimal but with lower computational complexity. Moreover, the performance of the proposed per-BS precoding schemes is close to the one obtained considering TPC over a supercell.Portuguese CADWIN - PTDC/ EEA TEL/099241/200
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Uplink resource allocation in cooperative OFDMA with multiplexing mobile relays
International audienceCooperative relaying is an important feature for the fourth generation wireless system to upgrade system performance. Mobile relays can offer better results than fixed relays without any additional infrastructure cost. However, efficient cooperation decision as well as resource allocation are critical to satisfy model constraints as required quality of service (QoS). In this work, simple mobile users with advantageous channels can act as potential relays for cell edge users for an uplink transmission. They multiplex, in the frequency domain, their own data to that of the relayed sources, with the objective for both relay and sources to reach a target data rate. An optimal joint resource blocks (RB) allocation and power allocation scheme under a required data rate constraint per user is proposed. The optimization problem is formulated to minimize the total system power. Dual decomposition and subgradient method are used to solve the optimization problem after dividing it into independent subproblems with less complexity to find the optimal solution. The cooperation decision and the sources-relays association is either performed as a first step of resource allocation, or jointly optimized with RB and power allocation. Simulation results show that these proposed algorithms both reduce system's power consumption while ensuring the required QoS. Joint optimization of relay selection, RB and power allocation provides a higher power consumption decrease, but requires higher complexity and overhead
