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Abstract

Recently, zero-padding orthogonal frequency division multiplexing (ZP-OFDM) has been proposed as an alternative
solution to the traditional cyclic prefix (CP)-OFDM, to ensure symbol recovery regardless of channels nulls. Various
ZP-OFDM receivers have been proposed in the literature, trading off performance with complexity. In this paper,
we propose a novel low-complexity (LC) receiver for ZP-OFDM transmissions and derive an upper bound on the
bit error rate (BER) performance of the LC-ZP-OFDM receiver. We further demonstrate that the LC-ZP-OFDM
receiver brings a significant complexity reduction in the receiver design, while outperforming conventional
minimum mean-square error (MMSE)-ZP-OFDM, supported by simulation results. A modified (M)-ZP-OFDM receiver,
which requires the channel state information (CSI) knowledge at the transmitter side, is presented. We show that
the M-ZP-OFDM receiver outperforms the conventional MMSE-ZP-OFDM when either perfect or partial CSI (i.e.,
limited CSI) is available at the transmitter side.
Index Terms-Zero-padding, orthogonal frequency division multiplexing (OFDM), equalization.

I. Introduction
The growing demand for high data rate services for
wireless multimedia and internet services has led to
intensive research efforts on high-speed data transmis-
sion. A key challenge for high-speed broadband applica-
tions is the dispersive nature of frequency-selective
fading channels, which causes the so-called intersymbol
interference (ISI), leading to an inevitable performance
degradation. An efficient approach to mitigate ISI is the
use of orthogonal frequency division multiplexing
(OFDM) that converts the ISI channel with additive
white Gaussian noise (AWGN) into parallel ISI-free sub-
channels by implementing inverse fast Fourier transform
(IFFT) at the transmitter and fast Fourier transform
(FFT) at the receiver side [1]. It has been shown that
OFDM is an attractive equalization scheme for digital
audio/video broadcasting (DAB/DVB) [2,3] and has
successfully been applied to high-speed modems over
digital subscriber lines (DSL) [4]. Recently, it has also
been proposed for broadband television systems and
mobile wireless local area networks such as IEEE802.11a
and HIPERLAN/2 (HL2) standards [5].

The IFFT precoding at the transmitter side and inser-
tion of CP enable OFDM with very simple equalization
of frequency-selective finite impulse response (FIR)
channels. To avoid in-terblock interference (IBI)
between successive FFT processed blocks, the CP is dis-
carded and the truncated blocks are FFT processed so
that the frequency-selective channels are converted into
parallel flat-faded independent subchannels. In this way,
the linear channel convolution is converted into circular
convolution, and the receiver complexity both in equali-
zation and the symbol decoding stages is reduced [6].
However, since each symbol is transmitted over a single
flat subchannel, the multipath diversity is lost along
with the fact there is no guarantee for symbol detect-
ability when channel nulls occur in the subchannels.
As an additional counter-measure, coded OFDM
(C-OFDM), which is fading resilient, has been adopted
in many standards [7]. Trellis-coded modulation (TCM)
[8] and convolutional codes [9,10] are typical choices for
error-control codes. Interleaving together with TCM
enjoys low-complexity Viterbi decoding while enabling a
better trade off between bandwidth and efficiency. How-
ever, designing systems that achieve diversity gain equal
to code length is difficult considering the standard
design paradigms for TCM. Linear constellation pre-
coded OFDM (LCP-OFDM) was further proposed in
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[11] to improve performance over fading channels,
where a real orthogonal precoder is applied to maximize
the minimum product distance [12,13] and channel cut-
off rate [14], while maintaining the transmission rate
and guaranteeing the symbol recovery. In [15,16], the
LCP is combined with space-time block coding (STBC)
and channel coding in order to effectively improve the
space-time diversity order of the multiple antenna sys-
tem. The aforementioned LCP systems are based on
Hadamard matrices and can employ the simple MMSE
linear decoder at the receiver side, which has low com-
plexity compared to the maximum likelihood (ML)
decoders currently used in such systems. Subcarrier
grouping was proposed in [11] to enable the maximum
possible diversity and coding gain. However, the LCP
that is used within each subset of subcarriers is in gen-
eral complex.
To ensure symbol recovery regardless of channel nulls,

Zero-Padding (ZP) of multicarrier transmission has been
proposed to replace the generally non-zero CP. Unlike
CP-OFDM, ZP-OFDM guarantees symbol recovery and
FIR equalization of FIR channels. Specifically, the zero
symbols are appended after the IFFT processed informa-
tion symbols. In such way, the single FFT required by
CP-OFDM is replaced by FIR filtering in ZP-OFDM
that adds to the receiver complexity. To trade-off BER
performance for extra savings in complexity, two low-
complexity equalizers for ZP-OFDM are derived in [17].
Both schemes are developed based on the circularity of
channel matrix while reducing complexity by avoiding
inversion of a channel dependent matrix. However, the
BER performance of the two sub-optimal receivers pro-
posed in [17] is not as good as MMSE-ZP-OFDM.
Adapting the transmitter designs to the propagation

channel facilitates performance improvement. Depend-
ing on the CSI available to the transmitter, various para-
meters such as power levels, constellation size, and
modulation are adjustable by the channel-adaptive trans-
missions [18]-[20]. The challenge in a wireless setting is
on whether and what type of CSI can be practically
made available to the transmitter, where fading channels
are randomly varying. Apparently, this is less of an issue
for discrete multi-tone (DMT) systems in wireline links,
which has been standardized for digital subscriber line
modems. In both single-input single-output (SISO) and
multiple-input multiple-output (MIMO) versions of
DMT, perfect CSI is assumed to be available at the
transmitter [21]. Although it is reasonable for wireline
links, we can only justify the assumption of perfect CSI-
based adaptive transmissions developed for SISO [22]
and MIMO OFDM wireless systems [23] when the fad-
ing is sufficiently slow. Since no-CSI leads to robust but
rather pessimistic designs and perfect CSI is mostly

impractical for wireless links, recent efforts geared
toward exploitation of partial CSI-based transmissions.
In this work, we assume limited CSI knowledge. In par-
ticular, we assume that only small number of channel
taps are available at the transmitter.
In this paper, we propose a novel reduced-complexity

receiver design for ZP-OFDM transmissions (LC-ZP-
OFDM) that not only outperforms MMSE-ZP-OFDM
(confirmed through simulation results) but also uses
low-complexity computational methods that bring a sig-
nificant power saving to the proposed receiver. We
show that linear processing collects both multipath and
spatial diversity gains, leading to significant improve-
ment in performance, while maintaining low complexity.
Note that the proposed LC-ZP-OFDM receiver consists
of two stages, i.e., a low-complexity sub-optimal MMSE
receiver at first stage followed by linear operations at
second stage to investigate the underlying available
diversity. A M-ZP-OFDM receiver for transmitter
designs based on perfect, as well as limited CSI knowl-
edge, is further included, which significantly outper-
forms MMSE-ZP-OFDM. BER upper bounds are
presented for the two-stage LC receiver. The perfor-
mance improvement of the LC-ZP-OFDM and M-ZP-
OFDM receivers as compared with the conventional
MMSE-ZP-OFDM receiver is further corroborated
through simulation results.
The rest of this correspondence is organized as fol-

lows. We start in Section II by describing our model
and assumptions. In Section III, the reduced-complexity
MMSE-based receiver is proposed. Computational com-
plexity analysis and numerical results are presented in
Sections IV and V, respectively. The paper is concluded
in Section VI.

II. System model
We consider a single-transmit single-receive antenna sys-
tem over a frequency-selective fading wireless channel.
The channel impulse response (CIR) of the jth informa-
tion block is modeled as an FIR filter with coefficients hj

= [hj[0],..., hj[L]]T, where L denotes the corresponding
channel memory length. The random vectors hj are
assumed to be independent zero-mean complex Gaussian
with two choices of power-delay profile: Uniform power-
delay profile with variance 1/(L + 1), and exponentially
decaying power-delay profile θ(τk) = Ce−τk/τrms with delays
τk that are uniformly and independently distributed [24].
The jth M ×1 information block xjM is IFFT precoded

by the IFFT matrix to yield the time-domain block vec-

tor x̃jzp and padded by D trailing zeros as follows

x̃jzp = Qzpx
j
M (1)
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where

Qzp = [QM0D×M]H (2)

Therefore, the received block symbol is given by

r̃jzp = HQzpx
j
M +HIBIQzpx

j−1
M + ñj

N (3)

where N = M + D; H is the N × N lower triangular
Toeplitz filtering matrix with its first column being [hj

[0],..., hj[L] 0,..., 0 ]T; HIBI is the N × N upper triangular
Toeplitz filtering matrix that captures the inter-block
interference (IBI), with its first row being [0,..., 0 hj[0],...,
hj[L] ]; and ñj

N
denotes the AWGN noise. Since L + 1 ≤

D, we have HIBIQzp = 0, i.e., the all-zero 0D×M matrix
plays the key role in ZP-OFDM by eliminating the IBI.
Having the H matrix partitioned between its first M and
last D columns as H = [H0, Hzp], the received block
symbol will be given by

r̃jzp = HQzpx
j
M + ñj

N = H0QH
Mx

j
M + ñj

N. (4)

The N × M submatrix H0, which corresponds to the
first M columns of H, is Toeplitz and is guaranteed to
be invertible, which assures symbol recovery regardless
of channel zero locations. In this case, due to its chan-
nel-irrespective symbol detectability property, ZP-
OFDM is able to exploit fully the underlying multipath
diversity [1]. Assuming the symbols xjM are i.i.d with var-

iance σ 2
x and the additive white Gaussian noise ñj

N to be

i.i.d with variance σ 2
x , the minimum mean-square error

(MMSE) estimator of xjM is given by [17]

x̂jM = σ 2
x QMH

H
0 (σ

2
n IN + σ 2

x H0HH
0 )

−1r̃jzp.

It should be emphasized that channel inversion of a N
× N matrix cannot be precomputed due to its depen-
dence on channel that brings about an extra implemen-
tation cost for the MMSE-ZP-OFDM receiver.
Specifically, equalization in (5) is computationally costly,
as the pseudo inverse of the Toeplitz matrix H0 is
required, whose precomputation is impossible due to
the channel coefficients’ variations from block to block.
Thus, from an implementation point of view, a low-
complexity ZP-OFDM is desirable. This observation
motivates the subsequent sub-optimal low-complexity
ZP-OFDM equalizers, such as ZP-OFDM-FAST-ZF/
MMSE and the ZP-OFDM-OLA [17] originating from
the overlap-and-add (OLA) method. Thus, complexity is
always an issue when dealing with ZP-OFDM systems,
as compared to the computationally efficient FFT-based
CP-OFDM systems. Its worth mentioning that ZP-
OFDM-OLA is analogous to CP-OFDM; thus, it incurs
identical complexity and is not able to fully exploit the

underlying multipath diversity. To overcome these lim-
itations, our proposed scheme targets practical ZP-
OFDM receiver that exploits full multipath diversity
while maintaining low complexity.

III. Reduced-complexity mmse-based receiver
The proposed receiver includes a suboptimal channel
independent MMSE equalizer in the feed forward stage,
followed by linear processing operations in the feed-
back stage. Specifically, the feed forward stage exploits
the circulant structure of the channel matrices,

H’ = Q�QH (6)

where H′ is N × N circulant matrices with entries [H′]
k,l = h((k - l) mod N); Λ is a diagonal matrix whose (n,
n) element is equal to the nth DFT coefficient of h. Due
to the trailing zeros, the last D columns of H in (4) do
not affect the received block. Thus, the Toeplitz matrix
H can be replaced by the N × N circulant matrix H′ and
(4) can be written as

r̃jzp = HQzpx
j
M + ñj

N = H′Qzpx
j
M + ñj

N. (7)

The H′ matrix takes advantage of FFT to yield a set of
flat fading channels that can be equalized easily. The
ZP-OFDM receiver output will be

rjN = QNH’Qzpx
j
M + nj

N

= QNH’QH
NQNQzpx

j
M + nj

N

= �QNQzpx
j
M + nj

N = �VxjM + nj
N

(8)

where

V = QNQzp. (9)

After applying the N-point FFT QN to r̃jzp, the subopti-

mal MMSE-ZP-OFDM receiver in the feed forward
stage is formed in two steps. First, we obtain an MMSE
estimator of x̂jM using

x̂jM = E[xjM(r
j
N)

H].E−1[rjN(r
j
N)

H]

= σ 2
x V

H�H[σ 2
n I + σ 2

x �VVH�H]−1rjN.
(10)

The (m, n) th element of VVH is equivalent to

1/
N
sin

(
πM(n − m)/

N
)

sin
(
π(n − m)/

N
) ejπ(n − m)(M − 1)/

N, which is

equal to M/
N for the diagonal elements and is negligible

compared to the diagonal elements when M/
N is close

to 1. This is a common feature in the context of all cur-
rent standardized OFDM systems, i.e., DAB and DVB.
Therefore, (10) can be further simplified assuming that
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x̂jM = σ 2
x
N
M

VH�H
[
N
M

σ 2
n I + σ 2

x ��H
]−1

rjN., leading to

x̂jM = σ 2
x
N
M

VH�H
[
N
M

σ 2
n I + σ 2

x ��H
]−1

rjN. (11)

The resulting data streams detected from (11) are fed
into a minimum Euclidean distance decoder, yielding

x̃jM, i.e., a decoded version of the transmitted symbols.
The decoded signals are then fed into the feed-back
stage, which is responsible for exploiting the underlying
multipath diversity. Specifically, consider the generation
of the matrix Πl, l = 0, 1, 2,..., L, as follows:

[�l]p,q =
{

0 (p − q)mod N = l
[H’]p,q (p − q)mod N �= l (12)

where 1 ≤ p, q ≤ N, then, (7) can be re-written as

r̃′l = r̃jzp − �lQzpx̂
j
M. (13)

Under the high SNR assumption, we can safely
assume that xjM ≈ x̂jM. Therefore, we can write (13) as
follows:

r̃′l = HlQzpx
j
M + ñj

N (14)

where

[Hl]p,q =
{
[H’]p,q (p − q)mod N = l

0 (p − q)mod N �= l.
(15)

Combining each diversity branch in (14), we have

z̃j =
QH

zp
∑L

l=0 H
H
l r̃

′
l∑L

l=0 ||Hl||2
. (16)

The signal in (16) is then fed into a maximum likeli-
hood decoder to recover the transmitted symbols. It is
observed from (16) that the maximum achievable diver-
sity order is given by L + 1. This illustrates that our pro-
posed receiver is able to fully exploit the underlying
spatial and multipath diversity gains relying on simple
linear processing operations only.

IV. M-ZP-OFDM RECEIVER
In this section, we propose a M-ZP-OFDM receiver that
has access to CSI at the transmitter side, such that, at
the transmitter side, the zero-padded information sym-
bols are multiplied by the set of matrices C2,l and sent
through the channel, processed by the circulant matrix
H′ and finally multiplied by the the set of matrices C1,l

at the receiver side to exploit the underlying multipath
diversity. For l = 1,..., L, the matrices C1,l and C2,l are
generated as following [25].

C1,l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1,l√∑N
t=1 |at,l|2

0 · · · 0

0 a2,l√∑N
l=1 |at,l|2

· · · ...

... · · · . . . 0
0 0 · · · aN,l√∑N

l=1 |at,l|2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

C2,l =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√∑N
t=1 |at,l|2∑L
k=1 a1,k

0 · · · 0

0
√∑N

t=1 |at,l|2∑L
k=1 a2,k

· · · ...
... · · · . . . 0

0 0 · · ·
√∑N

t=1 |at,l|2∑L
k=1 aN,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(17)

where

�l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1,l 0 · · · 0

0 a2,l · · · ...
... · · · . . . 0
0 0 · · · aN,l

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (18)

Note that C1,l and C2,l are built such that Λl = C1,l

ΛC2,l, where Λl = QHHlQ. Using this property, we can
drive their corresponding circulant matrices Ψ1,l and Ψ2,

l using Ψ1,l = QC1,lQ
H and Ψ2,l = QC2,lQ

H. Thus
exploiting the circulant structure of these matrices we
have

Hl = �1,lH’�2,l. (19)

Thus, multiplying the zero-padded symbols at the
transmitter side with Ψ2,l and the output at the receiver
side by Ψ1,l, for each diversity branch we can rewrite (7)
as following

rc,l = H’�2,lQzpx
j
M + nj

N

r’c,l = �1,lrc,l = �1,lH’�2,lQzpx
j
M + �1,ln

j
N

= HlQzpx
j
M + �1,ln

j
N

(20)

Note that for l = 1,..., L + 1, both C1,l and Ψ1,l have
unit power and thus do not lead to noise enhancement.
More importantly, it can be seen that (20) is similar to
(14) in LC-ZP-OFDM proposed in Section III, in the
sense that we are exploiting the underlying multipath
diversity from each diversity branch.

V. Analytical bounds on the ber performance for
the low-complexity receiver
The two-stage receiver consists of the suboptimal
MMSE-ZP-OFDM at the first stage and the linear
operations at the second stage. The BER can then be
written as
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pe = (pe−1stStage ∩ pe−2ndStage)

+ ((1 − pe−1stStage) ∩ pe−2ndStage),
(21)

where pe−1stStage stands for the probability of decoding
the symbols erroneously at the first stage and pe−2ndStage

stands for the probability of decoding the symbols erro-
neously at the second stage. pe can be further simplified
as following

pe =
(
pe−2ndStage|pe−1stStage

)
pe−1st Stage

+
(
pe−2ndStage|1 − pe−1stStage

)
(1 − pe−1stStage)

=
[(
pe−2ndStage|pe−1stStage

) − (
pe−2ndStage|1 − pe−1stStage

)]
× pe−1stStage +

(
pe−2ndStage|1 − pe−1stStage

)
(22)

In order to find each of pe−1stStage,
pe−2ndStage|(1 − pe−1stStage), and (pe−2ndStage|pe−1stStage), we
resort to the conventional Chernoff bound on the BER
performance. As mentioned earlier, through the MMSE
criterion, the mean-squared error (MSE) is minimized,
which can be expressed as following [25]

εMMSE = E
[
tr
((

x̂jM − xjM
)(

x̂jM − xjM
)H)]

=

[
tr

(
1

σ 2
d

IM +
1
σ 2
n
VH�H�V

)]−1

≈
[
tr

(
1

σ 2
d

IM +
M

σ 2
n N

QH
zpH’HH’Qzp

)]−1

︸ ︷︷ ︸
as is considered in the 1st stage sub−optimal receiver

=
Nσ 2

n

M

[
Nσ 2

n

Mσ 2
d

+
L∑
l=1

|h(l)|2
]

(23)

The upper bound for the conditional pe−1stStage can be
then written as

pe−1stStage ≤ exp

⎛
⎝−d2c σ

2
d

(
1− εMMSE

σ 2
d

)
4εMMSE

⎞
⎠

= exp
(
d2c
4

(
1 − σ 2

d
εMMSE

))
= exp

(
−Md2c σ

2
d

4Nσ 2
n
q
)
,

(24)

where q =
∑L

l=1 |h(l)|2 whose pdf is denoted by p (q)
that has a chi-square distribution with 2L degrees of
freedom, and d2c stands for the minimum squared dis-
tances for different modulation types that are summar-
ized in Table 1. Note that for M-PSK modulation,
d2c = |1 − e−j2π/M|2. The average BER is thus upper
bounded by

pe−1stStage ≤
∫ ∞

0
exp

(
−Md2c σ

2
d

4Nσ 2
n
q

)
p(q)dq

=

[
1
2

(
1 −

√
Md2c SNR

4NL+Md2c SNR

)]L

×
L−1∑
k=0

(
L − 1 + k

k

)[
1
2

(
1 +

√
Md2c SNR

4NL+Md2c SNR

)]k

,

(25)

where

(
a
b

)
is the binomial coefficient, and SNR = σ 2

d
σ 2
n
.

Assuming that no error is propagated from the first
stage to the second stage, the second stage involves
maximum likelihood estimation of the originally
transmitted symbols from the L branch outputs r̃′l
in (14), each of which comes with diversity order 1.
The upper bound for this error probability is thus
given by

(pe−2ndStage|(1 − pe−1stStage))

≤
[
1
2

(
1 −

√
d2c SNR

4L+d2c SNR

)]L

×
L−1∑
k=0

(
L − 1 + k

k

)[
1
2

(
1 +

√
d2c SNR

4L+d2c SNR

)]k

,

(26)

Assuming that there is error propagated from the
first stage to the second stage, we can rewrite (14) as
following

r̃′l = r̃jzp − �lQzpx̂
j
M

= H′Qzpx
j
M + ñj

N − �lQzp

(
xjM + n1

)

= HlQzpx
j
M +

⎛
⎜⎝ñj

N − �lQzpn1︸ ︷︷ ︸
n2,l

⎞
⎟⎠ ,

(27)

where n1 has variance εMMSE and n2,l has variance

-σ 2
n = σ 2

n +
∑L

t=1,t �=l |h(l)|2εMMSE ≈ (1 + N
M )σ 2

n . Thus, the

error probability for this scenario can be written as

Table 1 Minimum squared distance for different
modulation types with average power normalized to one

Modulation d2c
BPSK 4

QPSK 2

16-PSK 0.1522

64-PSK 0.0096

16-QAM 0.4

64-QAM 0.0952
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d2c (28)

where SNR′ = M
M+NSNR. Therefore, (22) can be recon-

structed following (25, 26), and (28).

VI. Computational complexity analysis
In this section, we focus on the computational com-
plexity of the proposed receiver compared to the
conventional MMSE-ZP-OFDM receiver. The com-
putational complexity is measured based on the
number of the complex multiplications and complex
divisions. Since complex divisions can be implemen-
ted in various different ways, we did not decompose
them into complex multiplication. Note that it is not
trivial to elaborate explicit complexity expressions for
different OFDM systems in terms of the system ’s
parameters. Specifically, system’s complexity depends
on the parameters such as N, M, D, and L, each of
which are decisive in finding the number of the com-
plex multiplications involved. Finding a closed-form
expression in terms of the aforementioned system
parameters is rather difficult; therefore, in this work,
we have derived expressions for the approximate
multiplicative complexity counts and have used
Matlab simulations to find the exact number of com-
plex multiplications implemented. To do so, we have
used the minimal multiplicative bounds [26] to find
the arithmetic complexity of FFT of different block
lengths. Besides, to implement the FFT of length W
decomposable to the product of two prime numbers
a and b, we have implemented a FFTs of size b or b
FFTs of size a instead, without inquiring any addi-
tional operations such as multiplications by twiddle
factors [27].
Following (5), we derive the approximate computa-

tional complexity count for the conventional MMSE-
ZP-OFDM as below

x̂jM =

M︷︸︸︷
σ 2
x ×QM×︸ ︷︷ ︸

M2

[MN]︷ ︸︸ ︷
HH

0 ×

⎛
⎜⎜⎝σ 2

n IN +

[N2]︷︸︸︷
σ 2
x ×

[N2M]︷ ︸︸ ︷
H0 × HH

0

⎞
⎟⎟⎠

−1 [N2]︷︸︸︷
× r̃jzp

︸ ︷︷ ︸
[N3]

.
(29)

where [·] stands for the approximate operation count
involved in the operation implementation. (28) requires
total of N3 + N2 (N + M + 2) + M2 + M (N + 1)
operations.
Similarly, we derive the approximate computational

complexity count for the low-complexity receiver using
(11) and (16) as following

x̂jM =

[M]︷ ︸︸ ︷
σ 2
x

N
M×VH×︸︷︷︸

[NM]

[N]︷ ︸︸ ︷
�H×

⎛
⎜⎝N
M

σ 2
n I +

[N]︷︸︸︷
σ 2
x ×

[N]︷ ︸︸ ︷
��H

⎞
⎟⎠

−1

×rjN︸︷︷︸
[N]︸ ︷︷ ︸

[N]

,
(30)

z̃j =

[MN]︷ ︸︸ ︷
QH

zp×

⎛
⎜⎜⎝∑L

l=0

[N]︷ ︸︸ ︷
HH

l ×
[N(M+5)+M]︷︸︸︷

zjl

⎞
⎟⎟⎠

︸ ︷︷ ︸
[LN(M+6)+LM]∑L

l=0
||Hl||2︸ ︷︷ ︸

[M]

.

(31)

Therefore, the total number of operations required
to implement the low-complexity receiver is N ((M + 6)
L + M) + M (L + 1).
We also derive the approximate computational com-

plexity count for the M-ZP-OFDM receiver that
includes the additional complexity brought to the trans-
mitter side by multiplying the zero-padded information
symbols by the set of matrices C2,l, as well as the com-
putational complexity at the receiver side. Thus, using
[19] we have

rc,l = H’

[N2]︷ ︸︸ ︷
�2,lQzp x

j
M + nj

N,
(32)

which shows the additional complexity cost at the
transmitter side per diversity branch and

r’c,l = �1,lrc,l︸ ︷︷ ︸
[N2]

,
(33)

ẑj =

[MN]︷ ︸︸ ︷
QH

zp×

⎛
⎜⎝ L∑

l=o

[N]︷ ︸︸ ︷
HH

l ×
[N2]︷︸︸︷
r′c,l

⎞
⎟⎠

︸ ︷︷ ︸
[L(N2+N)]∑L

l=0
||Hl||2︸ ︷︷ ︸

[M]

(34)

which shows the additional complexity cost at the
receiver side. Therefore, the total number of operations
required to implement the low-complexity receiver is N
(NL + L + M) + M.
The overall computational complexity for the LC-ZP-

OFDM receiver, M-ZP-OFDM receiver, and the conven-
tional MMSE-ZP-OFDM receiver is summarized in
Table 2 for the case of M = 64 and N = 80 and
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scenarios with different combinations of channel mem-
ory lengths:
Scenario (1) L + 1 = 5
Scenario (2) L + 1 = 10
Note that the computational complexity of M-ZP-

OFDM receiver at the transmitter side does not include
the CSI estimation. The computational complexity of
the LC-ZP-OFDM receiver and the M-ZP-OFDM recei-
ver versus the MMSE-ZP-OFDM receiver in terms of
the number of the complex multiplications is illustrated
in Figure 1, which is plotted against time, assuming that
the channel estimate is updated at every t seconds. We
would like to emphasize that the MMSE equalizer in
MMSE-ZP-OFDM requires the inversion of an N × N
Toeplitz channel dependent matrix, which has to be
computed at every t seconds with a complexity of the
order O(N2). Note that as the channel memory lengths
of the underlying channel links increase, the complexity
of MMSE-ZP-OFDM, M-ZP-OFDM, and the LC-ZP-
OFDM receiver increases.
It is observed from Figure 1 that for scenarios one and

two with reasonable memory length for the underlying
channels, the aggregate complexity of the LC-ZP-OFDM
receiver is insignificant compared to the conventional

MMSE-ZP-OFDM as well as M-ZP-OFDM, as channel
parameters change with time.

VII. Numerical results
In this section, we present Monte-Carlo simulation
results for the proposed receiver assuming a quasi-static
Rayleigh fading channel.
Figure 2 illustrates the symbol error rate (SER) perfor-

mance of the proposed receiver for L+1 = 2. We assume
64-QAM, M = 64, and N = 80 as is practiced in the
context of HL2 systems. Our simulation results indicate
that LC-ZP-OFDM receiver outperforms the conven-
tional MMSE-ZP-OFDM equalizer by ≈ 3.3 dB without
error propagation (EP) from the first stage and by ≈ 0.5
dB with EP from first stage at SER = 10-3. We are also
including the SER performance of the M-ZP-OFDM
receiver with perfect CSI, as well as partial CSI (limited
CSI is available, e.g., only one of the two channel taps
are available at the transmitter side). As is illustrated in
Figure 2, the M-ZP-OFDM receiver with partial CSI
outperforms the conventional MMSE-ZP-OFDM by ≈ 4
dB at SER = 10-3, when l = 1. The system’s SER perfor-
mance for 64-QAM AWGN channel is provided as a
reference curve.

Table 2 Comparison of overall computational complexity

Implementation Number of complex multiplications Number of complex divisions

Scenario 1 Scenario 2 Scenario 1 Scenario 2

ZP-OFDM-MMSE 16,372 17,087 NONE NONE

LC-ZP-OFDM 2,688 8,408 80 80

M-ZP-OFDM RC = 3,3408 RC = 66,648 NONE NONE

TC = 25,600 TC = 51,200

TC transmitter complexity, RC receiver complexity
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Figure 1 Computational complexity of the LC-ZP-OFDM
receiver compared to MMSE-ZP-OFDM.
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Figure 2 SER performance of MMSE-ZP-OFDM, LC-ZP-OFDM
receiver with and without EP, and M-ZP-OFDM in the context
of HL2 (L + 1 = 2).
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In Figure 3, we provide further results on the perfor-
mance of the LC-ZP-OFDM receiver for L + 1 = 6. Our
results indicate that the LC-ZP-OFDM receiver outper-
forms the MMSE-ZP-OFDM equalizer by ≈ 5 dB with-
out EP and by ≈ 0.75 dB with EP at SER = 10-7.
Moreover, we are including the SER performance of the
M-ZP-OFDM receiver with partial CSI (e.g., only two or
three of the six channel taps are available at the trans-
mitter side) when l = 2, 3. It can be seen that the pro-
posed receiver outperforms the MMSE-ZP-OFDM
receiver by ≈ 4 dB at SER = 10-6, when l = 3.
In Figure 4, the SER performance of the LC-ZP-OFDM

receiver for L+1 = 2, 4, 6 is presented, assuming 64-QAM
modulation in the context of HL2, and is compared with
the theoretical values presented in Section V. As is illu-
strated in Figure 4, both the theoretical curves and their
corresponding simulated versions come with similar
slopes. As an example, when L+1 = 4, the theoretical
curve differs from its simulated counterpart by ≈ 2 dB.

VIII. Conclusion
We propose a novel reduced-complexity MMSE-based
receiver for ZP-OFDM systems. We show that, by incor-
porating linear processing techniques, our MMSE-based
receiver is able to collect full antenna and multipath
diversity gains. Simulation results demonstrate that our
LC-ZP-OFDM receiver outperforms the conventional
MMSE-ZP-OFDM receiver, while maintaining much
less complexity by avoiding channel dependent matrix
inversion. By using linear processing techniques that
require minimum computational complexity, the com-
munication power is minimized at no additional hard-
ware cost. We also propose a modified receiver that
outperforms the conventional MMSE-ZP-OFDM.

The authors declare that they have no competing
interests.

IX. Endnotes
Notation: (.), (.)T, (.)† and (.)H denote conjugate, trans-
pose, pseudo inverse, and Hermitian transpose opera-
tions, respectively. |.| denotes the absolute value, and
||.|| denotes the Euclidean norm of a vector. [.]k ,l
denotes the (k, l)th entry of a matrix, [.]k denotes the
kth entry of a vector, IM denotes the identity matrix of
size M, and 0M×M denotes all-zero matrix of size M ×
M. Q represents the M × M FFT matrix whose (l, k)

element is given by Q(l, k) = 1
/√

M exp(j2π lk
/
M) and

Q−1
M = QH

M represents the M × M IFFT matrix where 0 ≤

l, k ≤ M - 1. Bold upper-case letters denote matrices and
bold lower-case letters denote vectors.
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