1,281 research outputs found

    Defining and Measuring Critical Thinking in Engineering

    Get PDF
    AbstractCritical thinking is generally recognized as an important skill, and one that is a primary goal of higher education. However, there is surprisingly little in the literature regarding critical thinking in engineering. This paper describes two pilot studies. A mixed methods study found that graduate engineering students performed worse than undergraduate students on a standard critical thinking instrument. This difference is explained through the two groups’ familiarity with test-taking. In a qualitative study, engineering undergraduates were interviewed about how they use critical thinking. It was found that their descriptions were more complex than typical definitions in the literature. Overall, the results point to a need to further investigate what critical thinking means for engineering

    Epistemologies Of Assessment Instruments

    Get PDF

    Intertrial unconditioned stimuli differentially impact trace conditioning

    Get PDF
    Three experiments assessed how appetitive conditioning in rats changes over the duration of a trace conditioned stimulus (CS) when unsignaled unconditioned stimuli (USs) are introduced into the intertrial interval. In Experiment 1, a target US occurred at a fixed time either shortly before (embedded), shortly after (trace), or at the same time (delay) as the offset of a 120-s CS. During the CS, responding was most suppressed by intertrial USs in the trace group, less so in the delay group, and least in the embedded group. Unreinforced probe trials revealed a bell-shaped curve centered on the normal US arrival time during the trace interval, suggesting that temporally-specific learning occurred both with and without intertrial USs. Experiments 2a and 2b confirmed that the bulk of the trace CS became inhibitory when intertrial USs were scheduled, as measured by summation and retardation tests, even though CS offset evoked a temporally precise conditioned response. Thus, an inhibitory CS may give rise to new stimuli specifically linked to its termination, which were excitatory. A modification to the micostimulus temporal difference model is offered to account for the data

    Academic Problem-Solving and Students’ identities as engineers

    Get PDF
    Socially constructed identities and language practices influence the ways students perceive themselves as learners, problem solvers, and future professionals. While research has been conducted on individuals’ identity as engineers, less has been written about how the language used during engineering problem solving influences students’ perceptions and their construction of identities as learners and future engineers. This study investigated engineering students’ identities as reflected in their use of language and discourses while engaged in an engineering problem solving activity. We conducted interviews with eight engineering students at a large southeastern university about their approaches to open and closed-ended materials engineering problems. A modification of Gee’s analysis of language-in-use was used to analyze the interviews. We found that pedagogical and engineering problem solving uses of language were the most common. Participants were more likely to perceive themselves as students highlighting the practices, expectations, and language associated with being a student rather than as emerging engineers whose practices are affected by conditions of professional practice. We suggest that problem solving in an academic setting may not encourage students to consider alternative discourses related to industry, professionalism, or creativity; and, consequently, fail to promote connections to social worlds beyond the classroom. By learning about the ways in which language in particular settings produces identities and shapes problem solving practices, educators and engineering professionals can gain deeper understanding of how language shapes the ways students describe themselves as problem-solvers and make decisions about procedures and techniques to solve engineering problems

    Detrimental Effects of Environmental Tobacco Smoke in Relation to Asthma Severity

    Get PDF
    Background: Environmental tobacco smoke (ETS) has adverse effects on the health of asthmatics, however the harmful consequences of ETS in relation to asthma severity are unknown. Methods: In a multicenter study of severe asthma, we assessed the impact of ETS exposure on morbidity, health care utilization and lung functions; and activity of systemic superoxide dismutase (SOD), a potential oxidative target of ETS that is negatively associated with asthma severity. Findings: From 2002-2006, 654 asthmatics (non-severe 366, severe 288) were enrolled, among whom 109 non-severe and 67 severe asthmatics were routinely exposed to ETS as ascertained by history and validated by urine cotinine levels. ETS-exposure was associated with lower quality of life scores; greater rescue inhaler use; lower lung function; greater bronchodilator responsiveness; and greater risk for emergency room visits, hospitalization and intensive care unit admission. ETS-exposure was associated with lower levels of serum SOD activity, particularly in asthmatic women of African heritage. Interpretation: ETS-exposure of asthmatic individuals is associated with worse lung function, higher acuity of exacerbations, more health care utilization, and greater bronchial hyperreactivity. The association of diminished systemic SOD activity to ETS exposure provides for the first time a specific oxidant mechanism by which ETS may adversely affect patients with asthma. © 2011 Comhair et al

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP

    A pervasive role for biomass burning in tropical high ozone/low water structures.

    Get PDF
    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.We thank L. Pan for coordinating the CONTRAST flights and her constructive criticism of an early version of the manuscript; S. Schauffler, V. Donets and R. Lueb for collecting and analysing AWAS samples; T. Robinson and O. Shieh for providing meteorology forecasts in the field; and the pilots and crews of the CAST BAe-146 and CONTRAST Gulfstream V aircrafts for their dedication and professionalism. CAST was funded by the Natural Environment Research Council; CONTRAST was funded by the National Science Foundation. Research at the Jet Propulsion Laboratory, California Institute of Technology, is performed under contract with the National Aeronautics and Space Administration (NASA). A number of the US-based investigators also benefitted from the support of NASA as well as the National Oceanic and Atmospheric Administration. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy or decision. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory. NCAR is sponsored by the National Science Foundation.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1026
    • …
    corecore