1,039 research outputs found

    .Pause.

    Get PDF
    .Pause. is a series of fifteen abstract oil paintings that represent a visual inspection of changing mental/emotional states of being as we navigate life. My subject matter consists of natural and organic forms that twist, contort, overlap, and flow. These aspects—combined with dramatic and gradual shifts in color, movement, layering and lighting—create a bizarre environment of conflict and growth as well as a space for contemplation. This series is a mixture of stylistic directions, including abstract representation, gestural, and nonobjective work. Perception is called into question as the visual information becomes more obscure. Outside elements, such as lighting and the viewer’s position, play a large role in shaping the audience experience. My work includes themes similar to contemporary representational artists and stylistic choices reminiscent of the abstract expressionists

    A Prediction Model for Consumer Behavior regarding Product Safety

    Get PDF
    The objective of this study was the development of a model to predict whether a consumer would use a product safely as a function of sixteen different individual variables. Subjects were presented with four consumer products to use in an experimental setting where the true purpose of the study was concealed. Discriminant analysis was used to develop a prediction model to classify subjects into categories of safe or unsafe behavior. Prediction accuracy ranged from 68–86 percent for different types of behavior. The research illustrated which variables are important in determining whether a product will be used safely and has implications for product design, warnings, instructions for use and training.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    The statistical neuroanatomy of frontal networks in the macaque

    Get PDF
    We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework

    The Relationship between Saccadic Choice and Reaction Times with Manipulations of Target Value

    Get PDF
    Choosing the option with the highest expected value (EV; reward probability × reward magnitude) maximizes the intake of reward under conditions of uncertainty. However, human economic choices indicate that our value calculation has a subjective component whereby probability and reward magnitude are not linearly weighted. Using a similar economic framework, our goal was to characterize how subjective value influences the generation of simple motor actions. Specifically, we hypothesized that attributes of saccadic eye movements could provide insight into how rhesus monkeys, a well-studied animal model in cognitive neuroscience, subjectively value potential visual targets. In the first experiment, monkeys were free to choose by directing a saccade toward one of two simultaneously displayed targets, each of which had an uncertain outcome. In this task, choices were more likely to be allocated toward the higher valued target. In the second experiment, only one of the two possible targets appeared on each trial. In this task, saccadic reaction times (SRTs) decreased toward the higher valued target. Reward magnitude had a much stronger influence on both choices and SRTs than probability, whose effect was observed only when reward magnitude was similar for both targets. Across EV blocks, a strong relationship was observed between choice preferences and SRTs. However, choices tended to maximize at skewed values whereas SRTs varied more continuously. Lastly, SRTs were unchanged when all reward magnitudes were 1×, 1.5×, and 2× their normal amount, indicating that saccade preparation was influenced by the relative value of the targets rather than the absolute value of any single-target. We conclude that value is not only an important factor for deliberative decision making in primates, but also for the selection and preparation of simple motor actions, such as saccadic eye movements. More precisely, our results indicate that, under conditions of uncertainty, saccade choices and reaction times are influenced by the relative expected subjective value of potential movements

    Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value

    Get PDF
    For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance

    Spatial working memory and Inhibition of Return

    Get PDF
    Recently we showed that maintaining a location in spatial working memory affects saccadic eye movement trajectories, in that the eyes deviate away from the remembered location (Theeuwes, Olivers, & Chizk, 2005). Such saccade deviations are assumed to be the result of inhibitory processes within the oculomotor system. The present study investigated whether this inhibition is related to the phenomenon of inhibition of return (IOR), the relatively slow selection of previously attended locations as compared with new locations. The results show that the size of IOR to a location was not affected by whether or not the location was kept in working memory, but the size of the saccade trajectory deviation was affected. We conclude that inhibiting working memory–related eye movement activity is not the same as inhibiting a previously attended location in space. Working memory is a system that allows for the temporary storage of information until a task is completed (see, e.g., Baddeley, 1986). Awh and colleagues (Awh & Jonides, 2001; Awh, Jonides, & Reuter-Lorenz, 1998) provided evidence for a strong link between working memory and attention. For example, they showed that when a locatio

    Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene

    Get PDF
    We use a large laboratory, modeling, and field dataset to investigate the isoprene + O_3 reaction, with the goal of better understanding the fates of the C_1 and C_4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C_1 stabilized Criegee (CH_2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C_4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH_2OO + H_2O (k_((H_2O)) ∼ 1 × 10^(−15) cm^3 molec^(−1) s^(−1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H_2O_2, and 21% formic acid + H_2O; and CH_2OO + (H_2O)_2 (k_((H_2O)_2) ∼ 1 × 10^(−12) cm^3 molec^(−1) s^(−1)) yields 40% HMHP, 6% formaldehyde + H_2O_2, and 54% formic acid + H_2O. Competitive rate determinations (k_(SO_2/k(H_2O)n=1,2) ∼ 2.2 (±0.3) × 10^4) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO_2] ∼ 10 ppb). The importance of the CH_2OO + (H_2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH_2OO does not substantially affect the lifetime of SO_2 or HCOOH in the Southeast US, e.g., CH_2OO + SO_2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant
    corecore