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TECHNICAL NOTE 276k

ACCURACY OF APPROXTMATE METHODS FOR PREDICTING
PRESSURES ON POINTED NONLIFTING BODIES
OF REVOLUTION IN SUPERSONIC FLOW

By Dorris M. Ehret
- SUMMARY

The accuracy and range of applicability of the linearized theory,
second-order theory, tangent-cone method, conical-shock-expansion theory,
and Newtonian theory for predicting pressure distributions on pointed
bodies of revolution at zero angle of attack are investigated. Pressure
distributions and integrated pressure drag obtained by these methods are
compared with standard values obtained by the method of characteristics
and the theory of Taylor and Maccoll. Three shapes, cone, ogive, and a
modified optimum body, are investigated over a wide range of fineness
ratios and Mach numbers.

It is found that the linearized theory is accurate only at low values
of the hypersonic similarity parsmeter (the ratio of free-stream Mach
number to body fineness ratio) and that second-order theory appreciably
extends the range of accurate application. The second-order theory gives
good results on ogives when the ratio of the tangent of maximum surface
angle to the tangent of the Mach angle is less than 0.9. Tangent-eone
methods cannot be widely applied with good accuracy. In general, the
conical-shock-expansion theory predicts pressure and drag within engineer-
ing accuracy when the hypersonic similarity parameter is greater than 1.2.
Although Newtonian theory gives good accuracy, except for cones, at the
highest values of the hypersonic similarity parameter investigated, it is
less accurate than the conical-shock-expansion theory.

INTRODUCTTION

Various methods have been proposed for predicting pressure distribu-
tions on bodies of revolution at zero angle of attack in supersonic flow.
The method of characteristics, which can be carried to any degree of
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accuracy, is too time consuming to be practical for many engineering needs.
Other methods, although requiring less time, involve varying degrees of
approximation which limit their accuracy and range of applicability. This
investigation was undertaken to ascertain the range of applicebility and
accuracy of a few of the approximate methods. Pressure distributions
determined from the method of characteristics and from the theory of
Taylor and Maccoll are used as standerds for determining the accuracy of
these approximate methods. Wide ranges of Mach number and fineness ratio
are investigated in order to determine the range of values of the hyper-
sonic similarity parameter, the ratio of Mach number to body fineness
ratio, for which each of the various approximate methods is useful.

SYMBOLS

b - Do
CP pressure coefficient <:-—zﬂ;——:>
CD aerodynamic coefficient of drag based on body frontal area
d diameter of body
H total pressure

K similarity parameter, ratio of free-stream Mach number to
body fineness ratio

1 length of body

M  Mach number, ratio of local velocity to local speed of sound
P static pressure

o] dynamic pressure

r body coordinate normal to axis of symmetry

X body coordinate parallel to axis of symmetry

6 local slope of body

semivertex angle of body

b4 ratio of specific heats
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Subscript
o] free-stream condition
METHODS CONSIDERED

There are a number of theories for determining pressure and drag
coefficients on pointed bodies of revolution in various ranges of super-
sonic speeds. The apparent number is increased because, in some cases,
several different methods of applying the same basic ldea have been
proposed. A detailed study of all the theories would involve more time
than seemed warranted. Therefore the following five methods have been
chosen for investigation because of their anticipated usefulness and
simplicity of application.

Linearized Theory

Probably the best-known method of determining pressure distributions
at supersonic speeds is the linearized or small perturbation theory
presented by von Kdrmsn and Moore (reference 1). This potential theory
derived for slender bodies at low supersonic speeds can be applied when
the free-stream Mach angle 1s greater than the maximum angle of flow
deflection,

Second-Order Theory

The second-order theory of Van Dyke refines the linearized (or first-
order) theory by iteration. It has the same analytical limit; that is,
the ratio of the tangent of the semivertex angle to the tangent of the
Mach angle must be less than 1. (The practical limit is sbout 0.9.) The
second~order theory has been set up for easy use with adequate tables and
sample computing sheets in reference 2.

Tangent-Cone Method

1

One method for esgtimating pressures on curved bodles is to make use
of flow solutions for cones whose slopes correspond to these of the body
surface at the points in question. Two procedures caen be used in applying
this method. '
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One of the procedures simply uses the pressure coefficients for cones
of semivertex angle equal to the angle of the body at various stations.
This method gives the correct pressure at the vertex but fails to predict
any negative pressure coefficients. Estimating the pressure coefficients
for the body in this way involves a different total-head ratio for each
station and, hence, will be referred to as the tangent-cone method with
local total-head ratio.

It was conjectured that better results might be obtained if the
vertex total-head ratio, namely, that across the bow wave of the body,
were used to calculate the surface pressures from the Mach number distri-
bution. In this case the local Mach numbers are taken to be the surface
Mach numbers for cones tangent to the body at various stations. ZEither of
these methods can be applied rapidly by using tables such as those in
reference 3.

Conical-Shock-Expansion Theory

Recently Eggers and Savin (reference 4) have shown that the equations
for variation of Mach number with stream angle downstream of the vertex on
bodies of revolution reduce approximately to the Prandtl-Meyer equations
for two-dimensional flow when the ratio of Mach number to body fineness
ratio is greater than unity. Using this fact, they presented a conical-
shock-expansion theory for determining the Mach number and thus the
pressure distribution over bodies of revolution. To apply this method
the surface Mach number on a cone of semivertex angle equsl to that of
the body is determined for the desired free-stream Mach number. This Mach
number is determined from the approximate equations for conical flow
presented by Eggers and Savin to provide a completely analytical solution,
or it can be obtained from reference 3. The flow quantities downstream
of the vertex are then obtained by applying the Prandtl-Meyer expansion
equation. It will be noted that, according to this theory, the distribu-
tion of pressure as a function of (6g-0)/6g is dependent only on the
vertex angle and free-stream Mach numnper.

Newtonian Theory

The Newtonian concept of flow assumes that the shock wave lies on the
body surface, a condition which is reached in the 1limit as M—>w and 7—>1.
The assumption is made that the component of momentum normal to the sur-
face is lost and the tangential component is unchanged. This yields a
pressure coefficient which depends only on the local slope. This simple
analysis neglects the centrifugal forces due to body curvature. Equations
which take into account the centrifugal forces were presented by Busemann
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(reference 5) and were later rederived in reference 6. It has been
suggested that either the Newtonian impact theory alone or with centrifugal
forces considered might be applied at finite Mach numbers with reasonsable
accuracy when the shock wave lies close to the body. Newtonian theory
does not predict the variation of pressure coefficient with Mach number
but simply predicts the limiting value for very high Mach number.

PROCEDURE AND SCOPE

The investigation included three body shapes, the cone, the tangent
ogive,l and a modified nose of an optimum body (fig. 1). The forepart
of a Haack optimum closed body defined by

r/rmax _ [l _<x;21>2] 3/4

was used as modified by the addition of a cone tangent at x/l = 0.05.
The cone was used to replace the blunt nose in order to make it possible
to apply the theories being investigated. For convenience, this modified
body will be referred to as the optimum body in this report.

The theories were applied to various combinations of fineness ratio
and Mach number. The following tables list the conditions investigated
for each theory:

Linearized and Second-Order Theories

Cones Ogives
1/a g Mo 1/d g My (r/a] Mo
5.715 59 [ 1.958 |{ 2.836 | 10° | 5.0 6 | 3.0
5.0 5.422 | 3 | 1.5
7.0 1.866 | 15° | 1.3 3 | 2.273
8.492 2.0 9 { 8.137
10.146 3.0 3 | 2.809
2.836 |10°| 1.5 3.634% {2 | 2.0
3.0 1.374 | 20° { 1.3
k.0 1.7
2.0
2.443

lA tangent ogive 1s a pointed convex surface of revolution generated by
rotation of a cireular arc, the tangent at the maximum radius being
parallel to the axis of symmetry.
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Tangent-Cone Method (Total-head
ratio applied each way)

Optimum bodies Ogives
1/a Mo 1/a | Mo |1/ | Mo
3 3.0 3 1.5 || 4 6.0
I 6.0 2 2 1.5} 3.0
3 3 3 6.0
Conical-Shock-Expansion Theory
Optimum bodies Ogives
1/d Mo al My [ 1/a | Mo
3 3.0 3 1.5l 9 9.0
N 6.0 6 3 4 6.0
12 6 1.5 3.0
2 2 3 6.0
3 3 6 12.0
6 6
Newtonian Theory
Cones ?ﬁ;ﬁ%ﬁ? Ogives
1/a | 65 M, 1/a | 6g M, |1/a|M, | 1/a My
5.715 50 1 3.0 1.866 {15° }1.3 3 | 3.0 3 1.5
5.0 2.0 L | 6.0 6 3.0
7.0 3.0 12 6.0
8.492 ) 3.63% 3 3.0
10.146 [|1.374 |20° |1.5 6 6.0
2.836 {10° { 1.5 1.7 I 6.0
3.0 2.0 1.5 3.0
k.o 2.443 3 6.0
5.0 6 12.0
5.422

The accuracy of the methods was determined by comparing both the
pressure distribution and the integrated pressure drag obtained by the
chosen methods with those obtained from standard solutions. Standard
values for cones were obtained from tables of solutions to the theory of
Taylor and Maccoll (for example, reference 3). Solutions calculated by
use of the method of characteristics which took into account the variation
of entropy in the flow field were used as standards for curved bodies.
Some of the characteristic solutions used were those presented in
reference 7 or were obtained from the cross plots in that reference.
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The validity of using pressure distributions from characteristic solu-
tions as standards has been established by the close correlation of some
available experimental pressure data with pressure distributions deter-
mined by the method of characteristics. The error in integrating the
characteristic solutions to obtain pressure drag is estimated to be
about 2 percent.

In applying the linearized and second-order theories, the approximate
tangency condition and the exact isentropic equation for converting
velocity to pressure were used, as was done in reference 2. In the
calculations using conicsal-shock-expansion theory the vertex solution was
obtained from reference 3 rather than from the approximate equations of
reference 4. Both the simple Newtonian impact forces giving

Cp = 2 8in26

and the expression including centrifugal forces were used in calculating
the pressure distributions over the bodies investigsated.

RESULTS AND DISCUSSION

The results of this investigation are correlated on the basis of the
hypersonic similarity parameter, the ratio of free-stream Mach number to
body fineness ratio. The hypersonic similarity rule which was derived for
slender bodies in hypersonic flow (reference 8) has been shown to hold
over a wide range of Mach numbers and fineness ratios, but is not valid
for low Mach numbers (<2) or smell fineness ratios (<2) (reference T).

The rule states that pressure distributions in terms of (p-po)/po are
the same for related, pointed, axially symmetric bodies which have the
same value of the hypersonic similarity parameter, K. This similarity
indicates that flow solutions are not dependent on Mach number or fine-
ness ratio separately but on their ratio. Thus, it would be expected

that this ratio, or similarity parameter, would be a more important factor
than either M or l/d in determining the range of applicability of a
given theory. .

The accuracy of linearized, second-order, and Newtonian theories as
applied to cones is illustrated in figure 2 for cones of various semi-
vertex angles over a range of values of XK. Correlation for .each method
on the basis of this parameter is reasonably good, regaerdless of the
inclusion of low Mach numbers (1.3) and fineness ratios (1.374). The
linearized theory is accurate within 10 percent only for cones of 5°
and 10° semivertex angle for K <0.7. The second-order theory is accurate
within 10 percent to K = 1.2 for cones S 20° (semivertex sngle) and
to K = 1.6 for cones <$10° (semivertex angle) Both these theories
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become less accurate as the Mach angle approaches the semivertex angle
and would also become less accurate near the Mach numbers of wave detach-
ment. Newtonlan theory applied to cones is always in error more than 17
percent for X < 2.

The results of applying the various methods for determining the
pressure distributions over tangent ogives and optimum bodies are
presented for values of K of about 0.5, 1, and 2. In each K range
a representative Mach number and fineness-ratio combination, one for
which the similarity law is applicable, is presented. Also, a test of
the theories for each K range is presented for a case with low Mach
number or large vertex angle which gives conditions which are on the
margin of or out of the range of applicability of the similarity rule.

A representative case for K = 0.5 (1/d = 6, M = 3) is shown in
figure 3 for the tangent ogive. It is apparent that even at this low
value of K +the linearized theory gives a pressure distribution appre-
ciably different from the standard. The pressure coefficients predicted
by this method are too low at the vertex and too high at the base. The
compensating errors in pressure decrease the error in drag. Although
the second-order theory predicts pressure coefficients which are slightly
high at the vertex, the distribution is in fairly good agreement with
the characteristic solution. The error in drag at this value of K is
small and the theory seems acceptable for most engineering purposes. As
would be expected, neither the conical-shock-expansion nor the Newtonian
theory (without centrifugal forces) gives good results at the low value
of K. The conical-shock-expansion value is exact, of course, at the
vertex but as x/l increases the pressure coefficients fall increasingly
lower than the standerd values. The pressure predicted by Newtonian
theory is 30 percent in error at the vertex and does not follow the
general trends of the standard. The large errors in pressures and drag
make these last two theories unsuitable for use at such low values of K.
The pressure distributions determined by the equation including centri—
fugal forces are in greater error than those from Newtonian forces slone
in all cases tested, and therefore are not shown except at a more favor-
able value of K +to be shown later.

Figure 4 shows the results for the same value of K as shown in
figure 3 (K = 0.5), but for low supersonic Mach number (M = 1.5). It is
noted that the percentage error at the vertex is greater than in the
preceding case for both the linearized and second-order theories. The
errors in pressure distribution compensate to give no error in drag.

The pressure distribution determined by tangent-cone method has been
included in this figure. Since the total-head ratio for K = 0.5 is
nearly unity, there is no distinguishable difference between the two
procedures for applying the total-head ratio. The pressure coefficient
at the vertex is, of course, exact but at the base, where the local slope
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of the body is zero, the predicted pressure coefficlent is zero. Thus
the coefficients are all higher than the standard values. The drag
error for this method at K = 0.5 1s large.

To illustrate the trend in linearized and second-order theories on
ogives as K increases, figure 5 is presented for K = 0.936. The
pressure coefficients predicted by both the theories are in greater
error at this value than at the lower value of K. Even at this value
of K, errors in pressure distribution compensate so that the integrated
wave drag predicted by the second-order theory is within the accuracy
of integration. .

Figure 6 is presented as a representative combination of Mach number
and fineness ratio for K = 1. This case is out of the range of practi-
cal applicability of the second-order and linearized theories (ratio of
tangents of semivertex and Mach angle is greater than 0.9). Either of
the tangent-cone methods gives a better approximation to the pressure
distribution for thls medium velue of K +than for lower values. The
procedure using a constant total-head ratio accurately predicts drag by
underestimating the pressures on the forepart of the body and over-
estimating the pressure near the base. The method using the local values
of the total-head ratio is still consistently high and gives about 12-
percent error in drag. The conical-shock-expansion method shows better
agreement at this value than at lower values of K. The errors in drag
for this method on tangent ogives ranged from 6 to 9 percent at K =1
for practical combinations of Mach number and fineness ratio. An
improvement is seen in Newtonian theory over the case for lower K, but
the pressure distribution calculated by this theory is in greater error
than those calculated by the other theories at K = 1.

Figure 7 gives the results of a test case of a body with a large
vertex angle (28°) at a low Mach number (2). The trends of the predic-
tions of the various approximate methods are consistent with those for
other combinations with the-same value of K, although the errors in some
theories are more pronounced for this test case.

In order to give an indication of the effect of body shape, figure 8
is presented for the modified optimum body having the same values of
Mach number (3) and fineness ratio (3) as the tangent ogive presented in
figure 6. The tangent-cone method using local values of total-head ratio
shows about the same accuracy as for the ogive. The error obtained by
using the tangent-cone method with a vertex total-head ratio is not
consistent with that for the corresponding ogive (drag is -12 percent in
error compared to accurate value for ogive). The pressure distribution
obtained from the conical-shock-expansion theory follows the same trends
and the drag error is only slightly greater than that for the ogive. The
integrated Newtonian pressure is in glightly less error than for the ogive.
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Figure 9 gives representative results for K = 2 on a tangent
ogive. At this value of KX, the tangent-cone method using local values
of total-head ratio gives pressures and dreg which are within the
accuracy required for many engineering purposes. The other tangent-cone
method underestimates the pressures over most of the body and does not
give a reasonably accurate pressure distribution. It is evident that
the conical-shock-expansion method gives very accurate pressure distri-
butions at high values of K. The drag is within the accuracy of the
integrated drag obtained from characteristic solutions. Also at this
value of K, where the shock wave lies fairly close to the body, Newtonian
theory gives good results. The error in drag is 5 to 8 percent. In this
case, which should be most favorable to using infinite Mach number solu-
tions, the pressure distribution determined by the equation including
centrifugal forces is shown. According to reference 6, the curve would
be terminated at the axis where the absolute pressure would be zero for
M = », Since application is made at a finite Mach number, the curve
might be terminated where the absolute pressure would be zero for the
given Mach number and for either y =1 or 7y = 1.k, Zero pressure is not
reached on the surface of an ogive for y =1 for X = 2. As mentioned
previously, this equation was used for all cases, but the curves have not
been presented due to the large increase in error over that obtained by
using the Newtonian term alone. In the other cases, the pressure distri-
butions from the full equation were no more accurate than in this case.
The expression considering the centrifugel forces, rather than the
Newtonian term alone, should be more accurate in the limit (M = o, 7 = 1).
Evidently there are some compensating errors when the centrifugal forces
are neglected and comparison is made at finite Mach number and 7 = 1l.lL.

The effect of large vertex angle at this value of K (2) was investi-
gated by checking the methods on an ogive with a semivertex angle
of 36.87°. The pressure distributions on this ogive with a fineness
ratio of 1.5 are presented in figure 10. The percentage errors in the
tangent-cone methods are gbout the same as those obtained for the ogive
with a fineness ratio of 3. The error in the conical-shock-expansion
theory is somewhat larger than for the representative case (Z/d = 3,
Mo = 6), but it is still less than 10 percent and therefore the theory
would be considered applicable. The error in Newtonian theory is about
the same as for other cases for K = 2.

Figure 11 summarizes the relative error in pressure drag determined
by the different methods. This figure, which gives error as a function
of X, may be used as a guide in determining which method will give
drag to the required accuracy for the body and velocity under considera-
tion. The curves have been faired for representative combinations of
Mach number and fineness ratio and are not expected to be valid for
extreme cases. For example, in some cases the drag for the ogive with
fineness ratio of 2 at a Mach number of 2 is not consistent with the

faired curves. It seems reasonable to assume that these curves can be
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.

used as guides for other bodies of the same general shape. It should
be remembered in using these curves that the error in drag is not
necessarily indicative of the error in pressure coefficients at various
body stations.

The plot also is indicative of the value of the*similarity para-
meter as a carrelating factor. It is seen that for the majority of cases
the accuracy of the theory is dependent essentially on K and not on
Mach number or fineness ratio.

A simplified means of obtaining drag may be used when values are
desired for a given body over a range of Mach numbers. The second-
order theory can be used to calculate drag for a few Mach numbers for
which the semivertex angle is less than the free-stream Mach angle, and
the conical-shock-expansion theory can be used for a few cases which
have values of K greater than 1.2. A curve may be falred through
values from both theories to give the drag of the body at any interme-
diate Mach number. This procedure would also be valuable if drag values
for a given body were needed near K = 1 where neither theory is very
accurate. As an example, this procedure has been followed for a tangent
ogive with Z/d = 3, and the results are presented in figure 12. Drag
was obtained by second-order theory for M = 1.5, 2.273%, and 2.809
and by conical-shock-expansion theory for M = 4, 5, and 6. The know-
ledge that conical-shock-expansion theory underestimates drag for K
slightly greater than 1, and the second-order theory overestimates drag
as K approached 1 (fig. 10) was used in fairing through the points.

The drag read from the curve for M = 3 1is within 5 percent of that
calculated by characteristics as indicated in the figure.

The time consumed in applying the various theories considered is
an important factor. The linearized theory takes only a few computing
hours per solution. If tables and computing sheets as presented in
reference 2 are used, a second-order solution can be done in about 10
hours. The conical-sghock-expansion theory requires approximately an
hour. Neither of the tangent-cone methods takes more than an hour or
two. The Newtonian term alone is very quickly calculated while in the
neighborhood of three hours is required if centrifugal forces are
included. The time required for a characteristic solution would be
expressed in weeks rather than hours.

CONCLUDING REMARKS

The range of body shapes, fineness ratios, and Mach numbers for
which any one of the foregoing theories gives results of acceptable
accuracy (less than 10-percent error in integrated drag) is limited.
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However, for most cambinations of fineness ratio and Mach number, one
of the approximate methods will give reasonable results. The important
consideration is to choose the appropriate method for the case in
question.

The second-order theory gives the most accurate pressure distribu-
tion for ogives when the ratio of the tangent of the semivertex angle
to the tangent of the Mach angle is less than 0.9. (For ogives, this
is equivalent to a value of K of about 0.9.) The drag determined by
this method is acceptably accurate. For values of K greater than 1.2,
the conical-shock-expansion theory gives the best results and is very
accurate at high values of K.

The tangent-cone method using the local total-head ratios gives
drag within 10 percent for K greater than 1.2 but is inferior to the
conical-shock-expansion theory. The method using & constant total-head
ratio gives very good results only for K =1 on ogives and is not
consistent for varying body shapes. The Newtonian theory glves accept-
able coefficients at K = 2 <for ogives and modified optimum body shapes,
but it is not as accurate as the conical-shock-expansion theory.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 5, 1952
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Figure 8. — Comparison of pressure distributions defermined

by different methods on a modified optimum body at
K=/l Id=3, M=3

- r———— e




Fressure coefficlent, C,

Error in drag
Method of characteristics
= ~—O— - Tangent-cone method (local H/H, ) + 8%
———wtl-w—— Tangeni-cone method (vertex H/#, ) -39

H9L2 NI YOV

« —=e— - Conical-shock-expansion theory + /
—C— = Newlonlan theory -6

— O Newlonian plus centrifugal forces

08 N
0
w08, 20 100

40 60
Longitudinal coordinate, percent length
Figure 9.—Comparison of pressure distributions determined by

ot s _onem am o gy 2r_ 4 £ 20 . T A -~
differen? methods on @ Jangent ogive of A=2, 1/d= 3, M,=6 W
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Figure f0-Comparison of pressure distributions defermined by
various methods on a fangent ogive at K=2, //d=15, M,=3.
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Figure /. —Accuracy of various approximale methods in infegrated pressure drag.
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O  Second-order theory
O Conical-shock-expansion theory
> Method of characteristics
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Figure 12.—Example of interpolation for drag coefficienft
on fangent ogive, //d=3.
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