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TECHNICAL NOTE 276k

ACCURACY OF APPROXIMATE METHODS FOR

PRESSURES ON POINTED NONLIFTING

OF REVOLUTION IN SUPERSONIC

By Dorris M. Ehret ‘

.
SUMMARY

The accuracy and range of applicability of

PREDICTING

BODIES

FLOW

the linearized theory,
second-order theory, tangent-cone method, conical-shock-expansiontheory,
and Newtonian theory for predicting pressure distributions on pointed
bodies of revolution at zero angle of attack are investigated. Pressure
distributions and integrated pressure drag obtained by these methods are
compared with standard values obtained by the method of characteristics
and the theory of Taylor and Maccoll. Three shapes, cone, ogive, and a
modified optimum body, are investigated over a wide range of fineness
ratios and Mach numbers.

It is found that the linearized theory is accurate only at law values
of the hypersonic similarity parameter (the ratio of free-stresm Mach
number to body fineness ratio) and that second-order theory appreciably
efiends the range of accurate application. The second-order theory gives
good results on ogives when the ratio of the tangent of maximum surface
angle to the tangent of the Mach angle is less than 0.9. Tangent-cone
methods cannot be widely applied with good accuracy. In general, the
conical-shock-expansiontheory predicts pressure and drag within engineer-
ing accuracy when the hypersonic similarity parsmeter is greater than 1.2.
Although Newtonian theory gives good accuracy, except for cones, at the
highest values of the hypersonic similarity parameter investigated, it is
less accurate than the conical-shock-expansiontheory.

INTRODUCTION

Various methods have been proposed for predicting pressure distribu-
tions on bodies of revolution at zero angle of attack in supersonic flow.
The method of characteristics,which can be carried to any degree of
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.
accuracy, is too time consuming to be practical for many engineering needs.
Other methods, although requiring less time, involve var@ng degrees of
approximation which 13mit their accuracy and range of applicability. This
investigation was undertaken to ascertain the range of applicability and
accuracy of a few of the approximate methods. Pressure distributions
determined from the methal of characteristics and from the theory of
Taylor and Maccoll are used as standards for determining the accuracy of
these appro-te methods. Wide ranges of Mach number and fineness ratio
are investigated
sonic similarity
ratio, for which

in order to determine the range of values of the hyper-
parameter, the ratio of Mach number to body fineness
each o-fthe various appro-te methods is useful.
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‘ressueCoefficient(pJ’”)
aerodynamic coefficient of ti-agbased on body frontal mea

diameter of body

total pressure

similarity parameter, ratio of free-stresm Mach number to
body fineness ratio

length of body

Mach number, ratio of local velocity to local speed of sound

static pressure

dynsmic pressure

body coordinate normal to axis of symmetry

body coordinate parallel to -s of symmetry

local slope of body

semivertex angle of body ‘

ratio of specific heats .
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Subscript

.

m

.

0 free-stream condition
.

There are a number
coefficients on pointed

METHODS CONSIDERED

of theories for determining pressure and drag
bodies of revolution in various ranges of super-—

sonic speeds. The apparent nuniberis increased because, in some cases,
several different methods of applying the same basic idea have been
proposed. A detailed study of all the theories would involve more time
than seemed warranted. Therefore the following five methods have been
chosen for investigationbecause of their anticipated usefulness and
simplicity of application.

Linearized Theory

Probably the best-known method of determining pressure distributions
at supersonic spee~ is the linearized or small perturbation theory
presented by von Karman‘ and Moore (reference 1). This potential theory
derived for slender bodies at low supersonic speeds can be applied when
the free-stresm Mach angle is greater than the maximum angle of flow
deflection.

Second-Order Theory

The second-order theory of Van Dyke refines the linearized (or first-
order) theory by iteration. It has the ssme analytical limit; that is,
the ratio of the tangent of the semivertex angle to the tangent of the
Mach angle must be less than 1. (The practical limit is about 0.9.) The
second-order theory has been set up for
sample computing sheets in reference 2.

. Tangent-Cone

easy use with adequate tables and

Method

One method for estimating pressures on curved bodies is to make use
of flow solutions for cones whose slopep correspond to these of the body
surface at the points in question. Two procedures can be used in applying
this method.

—- — ————.------ ...—.— ——-— — — .—_..—-
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One of the procedures simply uses
of semivertex angle equal to the angle
This method gives the correct pressure
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r’

the pressure coefficients for cones
of the body at various stations.
at the vertex but fails to predict

any negative pressure coefficients. Estimating the pressure coefficients
for the body in this way involves a different total-head ratio for each
station and, hence, will be referred to as the tangent-cone method with
local total-head ratio.

It was conjectured that better results might be obtained if the
vertex total-head ratio, namely, that across the bow wave of the body,
were used to calculate the surface pressures frcm the Mach number distri-
bution. In this case the local Mach numbers are taken to be the surface
Mach numbers for cones tangent to the body at various stations. Either of
these methods
reference 3.

Recently
for vsxiation

can be

Eggers

applied rapidly by using tables

Conical--Shock-ExpansionTheory

such as those in

and Satin (reference 4) have shown that the equations ,.

of Mach number with stream angle downstream of the vertex on
bodies of revolution reduce appro-tely to the Prandtl-Meyer equations
for two-dimensional flow when the ratio of Mach number to body fineness
ratio is greater than unity. Using this fact, they presented a conical-
shock-expansiontheory for determining the Mach number and thus the
pressure distribution over bodies of revolution. To apply this method
the surface Mach nuniberon a cone of semivertex angle equal to that of
the body is determined for the desired free-stream Mach number. This Mach
number is determined from the appro-te equations for conical flow .
presented by Eggers and Savin to provide a completely analfiical solution,
or it can be obtained frcm reference 3. The flow quantities downstream
of the vertex are then obtained by applying the Prandtl-Meyer expansion
equation. It will be noted that, according to this theory, the distribu-
tion of pressure as a function of (es-8)/13sis dependent only on the
vertex angle and free-stream Mach numer.

Newtonian Theory

The Newtonian concept of flow assumes that the shock wave lies on the
body surface, a condition which is reached in the limit as M+co and 7—>1.
The assumption is made that the component of mamentum normal to the sur-
face is lost and the tangential ccmponent is unchanged. This yields a
pressure coefficient which depends only on the local slope. This simple
analysis neglects the centrifugal forces due to body curvature. Equations
which take into account the centrifugal forces were presented by Busemann

.
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(reference 3) and were later rederived in reference 6. It has been
suggested that either the Newtonian impact theory alone or with centrifugal
forces considered might be applied at finite Mach nmibers with reasonable
accuracy when the shock wave lies close to the body. Newtonian theory
does not predict the variation of pressure coefficient with Mach number
but simply predicts the lhiting value for verj high Mach number.

PROCEDURE AND SCOPE

The investigation i.ncl~ed three body shapes, the cone, the tsngent
ogive,l and a modified nose of an optimum body (fig. 1). The forepart
of a Haack optimum closed body defined by

r/r- =
[’ -(%921”4

was used as modified by the addition of a cone tangent at x/1 = 0.05.
The cone was used to replace the blunt nose h order to make it possible
to apply the theories being investigated. For convenience, this modified
body will be referred to as the optimum body in this report.

The theories were applied to various combinations of fineness ratio
andkch number. The following tables list the conditions investigated
for each theory:

Linearized and Second-Order Theories

[

.-— ———

Cones Ogives

Z/d es ~ Z/d es ~ 2/d ~

5.715 ~o 1.958 2.836 100 5.0 6 3.0
5.422 3 1.5

?: 1.866 150 1.3

8.492 2.0 ; ;:3;
10.146 3.0 2.809

2.836 100 1.5 3.634 : 2.0
3.0 1.374 200 1.3
4.0 1.7

2.0
2.U3

1A tangent ogive is a pointed convex surface of revolution generated by
rotation of a circular arc, the tangent at the maximum radius being
psrallel to the axis of symmetry.

—
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Tangent-Cone Method (Total-head
ratio applied each way)

I@ timum bodies Ogives I

Conical-sho

Optimum bodies

c-ExpansionTheory

Ogives

I
Z/d

3
6

12
2
3
6 T

k Z/d

1.5 9
4

2 1.5
2 3
36
6

Newtonian Theory

Cones

Z/d

5.715

2.836

es %

50 3.0

;::
8.492
10.146

10° 1.5
3.0
4.0
5.0
5.422

Z/d 68 ~

L.866 150 1.3
2.0
3.0
3.634

L374 20° 1.5
1.7
2.0
2.443

MO

9.0
6.0
3.0
6.0

12. o

3.0
6.0

Ogives
-
Z/d

3
6

12

2
4
1.5

2

%

;:2
6.0
3.0
6.0
6.0

2::
12. o

The accuracy of the methods was determined by comp=ing both the
nressure distribution and the integrated pressure drag obtained by the—
chosen methods with those obtained from standard solutions. Standard
values ~or conee were obtained from tables of solutions to the theory of
Taylor and Maccol-1(for example, reference 3). Solutions calc~ated by
use of the method of characteristicswhich took into account the variation .
of entropy in the flow field were used as standards for curved bodies.
Some of the characteristic solutions used were those presented @
reference 7 or were obtained from the cross plots in that reference.

_. —— -—- _ .———.— ..-_—
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The validity of using pressure distributions from characteristic solu-
tions as standards has been established by the close correlation of some
available expertiental pressure data with pressure distributions deter-
mined by the method of characteristics. The error in integrating the
characteristic solutions to obtain pressure drag is esthated to be
about 2 percent.

In applying the linearized and second-order theories, the appro@nate
tangency condition and.the exact isentropic equatiorrfor converting
velocity to pressure were used, as was done in reference 2. In the
calculations using conical-shock-expansiontheory the vertex solution was
obtained from reference 3 rather than from the appro-te equations of
reference 4. Both the simple Newtonian impact forces giving

and
the

~ = 2 Sin’e

the expression including centrifugal forces were used in calculating
pressure distributions over the bodies investigated.

RESULTS AND DISCUSSION

The results of this investigation sre correlated on the basis of the
hypersonic similarity parameter, the ratio of free-stream Mach number to
body fineness ratio. The hypersonic similarity rule which was derived for
slender bodies in hypersonic flow (reference 8) has been shuwn to hold
over a wide range of Mach nurribersand fineness ratios, but is not valid
for low Mach nunibers(<2) or small fineness ratios (<2) (reference 7).
The rule states that pressure distributions in terms of (p-po)/po are
the ssme for related, pointed, axially symmetric bodies which have the
same value of the hypersonic s~larity psnmeter, K. This Similaity
indicates that flow solutions are not dependent on Mach number or fine-
ness ratio separately but on their ratio. Thus, it would be expected
that this ratio, or sWlarity parsmeter, would be a more important factor
than either M or Z/d in determining the range of applicability of a
given theory. .

The accuracy of linearized, second-order, and Newtonian theories as
applied to cones is illustrated in figure 2 for cones of various semi- ‘
vertex angles over a range of values of K. Correlation for.each method
on the basis of this parameter is reasonably good, regardless of the
inclusion of low llachnunibers(1.3) and fineness ratios (1.374). The
linearized theory is accurate within 10 percent only for cones of 5°
and 10° semivertex angle for K <0.7. The second-order theory is accurate
within 10 percent to K = 1.2 for cones ~ 20° (semivertex single)and

. to K= 1.6 for cones ~10° (semivertex angle). Both these theories

. . .——...—.. ~ . ___ __ ——____ . . _ ___
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become less accurate as the Mach angle approaches
and would also become less accurate near the Mach
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the semivertex angle
numbers of wave detach-

ment. Newtonian theory applied to cones is always in error more than 17
percent for K~2.

The results of appQnLng the various methods for determining the
pressure distributions over tangent ogives and optimum bodies are
presented for values of K of about O.~, 1, and 2. In each K range
a representative Mach number and fineness-ratio conibination,one for
which the shilsrity law is applicable, is presented. Also, a test of
the theories for each K range is presented for a case with low Mach
number or large vertex angle which gives conditions which are on the
margin of or out of the range of applicability of the similarity rule.

A representative case for K=O.5(Z/d=6,M=3)is shownin
figure 3 for the tangent ogive. It is apparent that even at this low
value of K the linearized theory gives a pressure distribution appre-
ciably different from the standard. The pressure coefficients predicted
by this method are too low at the vertex and too high at the base. The
compensating errors in pressure decrease the error in drag. Although
the second-order theory predicts pressure coefficients which are slightly
high at the vertex, the distribution is in fairly good agreement with
the characteristic solution. The error in drag at this value of K is
small and the theory seems acceptable for most engineering purposes. As
would be expected, neither the conical-shock-expansionnor the Newtonian
theory (without centrifugal forces) gives good results at the low value
of K. The conical-shock-expansionvalue is exact, of course, at the
vertex but as x/Z increases the pressure coefficients fall increasingly
lower than the standsrd values. The pressure predicted by Newtonian
theory is 30 percent in error at the vertex and does not follow the
general trends of the standard. The large errors in pressures and drag
make these last two theories unsuitable for use at such low values of K.
The pressure distributions determinedly the equation including centri–
fu~al forces are in greater error than those from Newtonian forces alone
in all cases tested, and therefore are not shown except at a more favor-
able value of K to be shown later.

Figure h shows the results for the s~e ~~ue of K as sh~ ~
figure 3 (K= O.~), but for low supersonic Mach numiber(M = 1.5). It is
noted that the percentage error at the vertex is greater than in the
preceding case for both the linearized and second-order theuries. The
errors in pressure distribution compensate to give no error in drag.
The pressure distribution determined by tangent-cone method has been
included in this figure. Since the total-head ratio for K = 0.5 is
nearly unity, there is no distinguishable difference between the two
procedures for applying the total-head ratio. The pressure coefficient
at the vertex is, of course, exact but at the base, where the local slope .

. .——- . .—. ——— .—.— —..— —..
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of the body is zero, the predicted pressure coefficient is zero. Thus
the coefficients are all higher than the standard values. The Clxag
error for this method at K = 0.5 is lsrge.

To illustrate the trend in linearized and second-order theories on
ogives as K increases, figure 5 is presented for K= 0.936. The
pressure coej?ficientspredicted by both the theories are in greater
error at this Value than at the lower value of K. EWen”at this value
of K, errors in pressure distribution compensate so that the integrated
wave drag predicted by the second-order theory is within the accuracy
of integration. .

Figure 6 is presented as a representative combination of Mach number
and fineness ratio for K = 1. This case is out of the range of practi-
cal applicability of the second-order and linearized theories (ratio of
tangents of semivertex and Mach angle is greater than 0.9). Either of
the tangent-cone methods gives a better approximation to the pressure
distribution for this medium value of K than for lower values. The
procedure using a constant total-head ratio accurately predicts dragby
underestimating the pressures on the forepart of the body and over-
estimating the pressure near the base. The method using the local values
of the total-head ratio is still consistently high and gives about 12-
percent error in drag. The conical-shock-expansionmethod shows better
agreement at this value than at lower values of K. The errors in dxag
for this method on tangent ogives ranged from 6 to 9 percent at K = 1
for practical combinations of Mach number and fineness ratio. An
improvement is seen in Newtonian theory over the case for lower K, but
the pressure distribution calculated by this theory is in greater error
than those calculatedly the other theories at K = 1.

Figure 7 gives the results of a test case of a bodywith a large
vertex angle (28°) at a low Mach number (2). The trends of the predic-
tions of the vsrious approbte methods sre consistent with those for
other combinations with the,ssme value of K, although the errors in some
theories ere more pronounced for this test case.

.

In order to give an indication of the effect of body shape, figure 8
is presented for the modified optimum body having the same values of
Mach number (3) and fineness ratio (3) as the tangent ogive presented in
figure 6. The tsmgent-cone method using local values of total-head ratio
shows about the ssme accuracy as for the ogive. The error obtained by
using the tangent-cone method with a vertex total-head ratio is not
consistent with that for the corresponding ogive (drag is -12 percent in
error compsred to accurate value for ogive). The pressure distribution
obtained from the conical-shock-expansiontheory follows the ssme trends
and the drag error is only slightly greater than that for the ogive. The
inte~ated Newtonian pressure is in slightly less error than for the ogive.

— .....— ———-—..— ———.— —.. -— —..—— —— - —
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Figure 9 gives representative results for K = 2 on a tangent
ogive. At this value of K, the tangent-cone method using local values
of total-head ratio gives pressures and drag which are within the
accuracy required for many engineering purposes. The other tangent-cone
method underestimates the pressures eve-rMost of the body and does not
give a reasonably accurate pressure distribution. It is evident that
the conical-shock-expansionmethod gives very accurate pressure distri-
butions at high values of K. The drag is within the accuracy of the
integrated drag obtained from characteristic solutions. Also at this
value of K, where the shockwave Mea fairly close to the body, Newtonian
theory gives good results. The error in drag is 5 to 8 percent. In this
case.,which should be most favorable to using infinite Mach number solu-
tions, the pressure distribution determined by the equation including
centrifugal forces is shown. According to reference 6, the curve would
be terminated at the axis where the absolute pressure would be zero for
M=m. Since application is made at a finite Mach number, the curve
might be terminated where the absolute pressure would be zero for the
given Mach number and for either 7 = 1 or 7 = 1.4. Zero pressure is not
reached on the surface of an ogive for 7 = 1 for K = 2. As mentioned
previously, this equation was used for all cases, but the curves have not
been presented due to the large increase in error over that obtained by
using the Newtonian term alone. In-the other cases, the pressure distri-
butions from the full equation were no more accurate than in this case.
The expression considering the centrifugal forces, rather than the
Newtonian term alone, should be more accurate in the limit (M= W, y = 1).
Evidently there are some compensating errors when the centrifugal forces
are neglected and comparison is made at finite Mach number and 7 = 1.4.

The effect of large vertex angle at this value of K (2) was investi-
gated by checking the methods on an ogive with a semivertex angle
of 36.870. The pressure distributions on this ogive with a fineness
ratio of 1.5 are presented in figure 10. The percentage errors in the
tsmgent-cone methods are about the ssme as those obtained for the ogive
with a fineness ratio of 3. The error in the conical-shock-expansion
theory is somewhat larger than for the representative case (z/d = 3,
~ = 6), but it is still less than 10 percent and therefore the theory
would be considered applicable. The error in Newtonian theory is about
the same as for other cases for K = 2.

Figure 11 summarizes the relative error in pressure drag determined
by the different methods. This figure, which gives error as a function
of K, may be used as a guide in determining which method will give
drag to the required accuracy for the body and velocity under considera-
tion. The curves have been faired for representative combinations of
Mach number and fineness ratio and are not expected to be valid for
extreme cases. For example, in some cases the drag for the ogive with
fineness ratio of 2 at a Mach nuaiberof 2 is not consistent with the
faired curves. It seems reasonable to assume that these curves can be

—-...- ———.— ———— .— —— .—-——.
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used as guides for other bodies of the ssme general shape. It should
be remembered in using these curves that the error in drag is not
necessarily indicative of the error in pressure coefficients at various
body stations.

The plot also is indicative of the value of the”simil.aritypara-
meter as a carelating factor. It is seen that for the majority of cases
the accuracy of the theory is dependent essentially on K and not on
Mach number or fineness ratio.

A simplified means of obtaining drag may be used when values sre
desired for a given body over a range of Mach nunibers. The second-
order theory can be used to calculate drag for a few Mach numbers for
which the semivertex angle is less thsm the free-stream Mach angle, and
the conical-shock-expansiontheory can be used for a few cases which
have values of K ~eater than 1.2. A curve maybe faired through
values from both theories to give the drag of the body at any interme-
diate Mach number. This procedure would also be valuable if drag values
for a given body were needed nefi K = 1 where neither theory is very
accurate. As an example, this procedure has been followed for a tangent
ogive with Z/d = 3, and the results are presented in figure 12. Drag
was obtained by second-order theory for M = 1.5, 2.2’734,and 2.809
and by conical-shock-expansiontheory for M = 4, 5, and 6. The lamw-
ledge that conical-shock-expansiontheory underestzhuatesdrag for K
slightly greater than 1, and the second-order theory overestimates drag
as K approached 1 (fig. 10) was used in fairing through the points.
The drag read frmn the curve for M = 3 is within 5 percent of that
calculated by characteristics as indicated in the figure.

The time consumed in applying the various theories considered is
an hportant factor. The linearized theory takes only a few computing
hours per solution. If tables and computing sheets as presented in
reference 2 me used, a second-order solution can be done in about 10
hours. The conical-shock-expansiontheory requires approximately an
hour. Neither of the tangent-cone methods takes more than an hour or
two. The Newtonian term alone is very quickly calculated while in the
neighborhood of three hours is required if centrifugal forces are
included. The time required for a characteristic solution wouldbe
expressed in weeks rather than hours.

CONCLUDING REMARKS

The range of body shapes, fineness ratios, and Mach numbers for
which any one of the foregoing theories gives resU1.tsof acceptable
accuracy (less than 10-percent error in integrated drag) is lhited.

—- —. . —..—.— — . —.——.- ——-—— -——- -
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However, for most combinations of fineness ratio and Mach number, one
of the appro-te methods will give reasonable results. The important
consideration is to choose the appropriate method for the case in
question.

The second-order theory gives the most accurate pressure distribu-
tion for ogives when the ratio of the tangent of the semivertex angle
to the tangent of the Mach angle is less
is equivalent to a value of K of about
this method is acceptably accurate. For
the conical-shock-expansiontheory gives
accuxate at high values of K.

than 0.9. (For ogives, this
0.9.) The drag determinedly
values of K greater than 1.2,
the best results and is very

The tangent-cone method using the local total-head ratios gives
drag titti 10 percent for K greater than 1.2 but is inferior to the
conical-shock-expansiontheory. The method using a constant total-head
ratio gives very good results only for K = 1 on ogives and is not
consistent for varying body shapes. The Newtonian theory gives accept-
able coefficients at K = 2 for
but it is not as accurate as the

Ames Aeronautical Laboratory
National Advisory Committee

Moffett Field, Calif.,

ogives and modified opthum body shapes,
conical-shock-expansiontheory.

for Aeronautics
June 5, 1952
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