5,078 research outputs found
Gamma radiation characteristics of plutonium dioxide fuel
Net gamma ray source intensity and spectrum for plutonium dioxide fuel element
Activities of the RTG Radiation Test Laboratory Progress report, 1 Jul. - 31 Dec. 1969
Safety, gamma ray spectrum, and data analysis of SNAP fuel capsule
Physics case of the very high energy electron--proton collider, VHEeP
The possibility of a very high energy electron-proton (VHEeP) collider with a
centre-of-mass energy of 9 TeV has been presented at previous workshops. These
proceedings briefly summarise the VHEeP concept, which was recently published,
and developments since then, as well as future directions. At the VHEeP
collider, with a centre-of-mass energy 30 times greater than HERA, parton
momentum fractions, , down to about are accessible for photon
virtualities, , of 1 GeV. This extension in the kinematic range to low
complements proposals for other electron-proton or electron-ion colliders.Comment: 6 pages, 2 figures, for proceedings of DIS 2017 worksho
Interloper bias in future large-scale structure surveys
Next-generation spectroscopic surveys will map the large-scale structure of
the observable universe, using emission line galaxies as tracers. While each
survey will map the sky with a specific emission line, interloping emission
lines can masquerade as the survey's intended emission line at different
redshifts. Interloping lines from galaxies that are not removed can contaminate
the power spectrum measurement, mixing correlations from various redshifts and
diluting the true signal. We assess the potential for power spectrum
contamination, finding that an interloper fraction worse than 0.2% could bias
power spectrum measurements for future surveys by more than 10% of statistical
errors, while also biasing power spectrum inferences. We also construct a
formalism for predicting cosmological parameter bias, demonstrating that a
0.15%-0.3% interloper fraction could bias the growth rate by more than 10% of
the error, which can affect constraints on gravity upcoming surveys. We use the
COSMOS Mock Catalog (CMC), with the emission lines re-scaled to better
reproduce recent data, to predict potential interloper fractions for the Prime
Focus Spectrograph (PFS) and the Wide-Field InfraRed Survey Telescope (WFIRST).
We find that secondary line identification, or confirming galaxy redshifts by
finding correlated emission lines, can remove interlopers for PFS. For WFIRST,
we use the CMC to predict that the 0.2% target can be reached for the WFIRST
H survey, but sensitive optical and near-infrared photometry will be
required. For the WFIRST [OIII] survey, the predicted interloper fractions
reach several percent and their effects will have to be estimated and removed
statistically (e.g. with deep training samples). (Abridged)Comment: Matches version accepted by PAS
Clean and Dirty Superconductivity in Pure, Al doped, and Neutron Irradiated MgB2: a Far-Infrared Study
The effects of Al substitution and neutron irradiation on the conduction
regime (clean or dirty) of the - and -band of MgB have been
investigated by means of far-infrared spectroscopy. The intensity reflected by
well characterized polycrystalline samples was measured up to 100 cm in
both normal and superconducting state. The analysis of the superconducting to
normal reflectivity ratios shows that only the effect of the opening of the
small gap in the dirty -band can be clearly observed in pure MgB,
consistently with previous results. In Al-doped samples the dirty character of
the -band is increased, while no definitive conclusion on the conduction
regime of the -band can be drawn. On the contrary, results obtained
for the irradiated sample show that the irradiation-induced disorder drives the
-band in the dirty regime, making the large gap in -band
observable for the first time in far-infrared measurements.Comment: 11 pages, 1 figur
Molecular biological methods for studying the gut microbiota : the EU human gut flora project
Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to diet. An extensive database of 16S rRNA sequences for tracking intestinal bacteria was generated by sequencing the 16S rRNA genes of new faecal isolates and of clones obtained by amplification with polymerase chain reaction (PCR) on faecal DNA from subjects belonging to different age groups. The analyses indicated that the number of different species (diversity) present in the human gut increased with age. The sequence information generated, provided the basis for design of 16S rRNA-directed oligonucleotide probes to specifically detect bacteria at various levels of phylogenetic hierarchy. The probes were tested for their specificity and used in whole-cell and dot-blot hybridisations. The applicability of the developed methods was demonstrated in several studies and the major outcomes are described
Far infrared properties of the rare-earth scandate DyScO3
We present reflectance measurements in the infrared region on a single
crystal the rare earth scandate DyScO3. Measurements performed between room
temperature and 10 K allow to determine the frequency of the infrared-active
phonons, never investigated experimentally, and to get information on their
temperature dependence. A comparison with the phonon peak frequency resulting
from ab-initio computations is also provided. We finally report detailed data
on the frequency dependence of the complex refractive index of DyScO3 in the
terahertz region, which is important in the analysis of terahertz measurements
on thin films deposited on DyScO3
Molecular ions in L1544. I. Kinematics
We have mapped the dense dark core L1544 in H13CO+(1-0), DCO+(2-1),
DCO+(3-2), N2H+(1-0), NTH+(3-2), N2D+(2-1), N2D+(3-2), C18O(1-0), and C17O(1-0)
using the IRAM 30-m telescope. We have obtained supplementary observations of
HC18O+(1-0), HC17O+(1-0), and D13CO+(2-1). Many of the observed maps show a
general correlation with the distribution of dust continuum emission in
contrast to C18O(1-0) and C17O(1-0) which give clear evidence for depletion of
CO at positions close to the continuum peak. In particular N2D+(2-1) and (3-2)
and to a lesser extent N2H+(1-0) appear to be excellent tracers of the dust
continuum. We find that the tracers of high density gas (in particular N2D+)
show a velocity gradient along the minor axis of the L1544 core and that there
is evidence for larger linewidths close to the dust emission peak. We interpret
this using the model of the L1544 proposed by Ciolek & Basu (2000) and by
comparing the observed velocities with those expected on the basis of their
model. The results show reasonable agreement between observations and model in
that the velocity gradient along the minor axis and the line broadening toward
the center of L1544 are predicted by the model. This is evidence in favour of
the idea that amipolar diffusion across field lines is one of the basic
processes leading to gravitational collapse. However, line widths are
significantly narrower than observed and are better reproduced by the Myers &
Zweibel (2001) model which considers the quasistatic vertical contraction of a
layer due to dissipation of its Alfvenic turbulence, indicating the importance
of this process for cores in the verge of forming a star.Comment: 24 pages, 9 figures, to be published in Ap
- …