N 70 35897

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Report 32-1481

Gamma Radiation Characteristics of Plutonium Dioxide Fuel

P. J. Gingo M. A. Dore

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

June 15, 1970

Technical Report 32-1481

Gamma Radiation Characteristics of Plutonium Dioxide Fuel

P. J. Gingo M. A. Dore

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

June 15, 1970

Prepared Under Contract No. NAS 7-100 National Aeronautics and Space Administration

Preface

The work described in this report was performed by the Guidance and Control Division of the Jet Propulsion Laboratory.

Acknowledgment

Extreme gratitude and appreciation must be given to the people who helped to direct this study to a useful result. In particular, special thanks must be given to Mr. E. Anderson of Mound Research, who gave much time in the critical evaluation of the data and resulting calculations. Also appreciated were the suggestions contributed by Dr. Albenesius, and Dr. Peterson of Savannah River Laboratory, Mr. P. Brown of General Electric Company and Mr. H. Bermanis of United Engineers & Constructors, Inc.

Contents

I. Introduction		•		•	•	•	•	1
II. Description		•						2
A. Isotopic Composition and Nuclear Characteristics								2
B. Gamma Radiation			•					2
C. Radioisotope Thermoelectric Generator Gamma Flux								3
D. Summary								18
Appendix A. Gamma Activity From Direct Decay of ²⁴¹ Pu and Dau Nuclides			•			•		21
Appendix B. Gamma Activity From ²³⁶ Pu Decay								23
Appendix C. Gamma Activity From Decay of ²³⁶ Pu Daughter Nuclid	les		•			•		24
Appendix D. Gamma Activity Accompanying 18 O (α , n) 21 Ne Reac	ion			•				26
Appendix E. Activity From Fission Gammas			•					27
References						•		29
Tables								
1. Neutron activity of isotopes								2
2. Gamma rays from decay of plutonium isotopes and their deco	y p	roc	luct	s				3
3. Gamma rays emitted by equilibrium fission product gammas prompt fission gammas			•					3
4. Gamma rays from ²³⁶ Pu and daughter nuclides								4
5. Gamma rays from ¹⁸ O (α, n) ²¹ Ne reaction								4
6. Gamma activity, $T=0$ yr								5
7. Gamma activity, T = 1 yr								6
8. Gamma activity, T = 5 yr								7
9. Gamma activity, <i>T</i> = 10 yr								
10. Gamma activity, <i>T</i> = 18 yr								9
11. Assumed capsule dimensions								10
12. Assumed material properties								10
13. Index for Tables 14 and 15								11
14. Plutonium dioxide: gamma photon surface fluxes at midplane	.							11
15. Plutonium dioxide: gamma photon fluxes vs detector position	١.							15

Contents (contd)

Figures

1.	Conceptual design of the ²³⁸ Pu fueled capsule				10
2.	Fuel capsule geometry for gamma flux analysis				10
3.	Photon flux vs radial detector position, capsule power 1575 W(th)				18
4.	Photon flux vs radial detector position, capsule power 3468 W(th)				18
5.	Photon flux vs radial detector position, capsule power 5679 W(th)				19
6.	Photon flux vs axial detector position, capsule power 1575 W(th)				19
7.	Photon flux vs axial detector position, capsule power 3468 W(th)				20
8.	Photon flux vs axial detector position, capsule power 5679 W(th)				20

Abstract

An extensive investigation was performed to characterize the net gamma ray source intensity and spectrum for PuO_2 fuel. All major sources were considered, including the gamma radiation from the various polutonium isotopes and their decay, and the decay of fission products, as well as gammas due to spontaneous fission and (α, n) reactions with ¹⁸O and other light element purities. Particular attention was paid to ²³⁶Pu and its daughter products. These sources are tabulated for 20 energy groups, which range from 1 KeV to 7 MeV. For each of the age-dependent composite source spectra so determined, gamma ray fluxes were calculated for three different thicknesses of fuel in a typical PuO_2 fueled capsule. These gamma fluxes were determined at the capsule surface, as well as at several exterior points.

Gamma Radiation Characteristics of Plutonium Dioxide Fuel

1. Introduction

In the exploration of space to the planet Jupiter and beyond, one of the non-solar-dependent sources of primary electrical power under serious study is the Radioisotope Thermoelectric Generator (RTG), which uses plutonium dioxide fuel. The plutonium isotopes have very long half-lives and can be considered usable for scientific missions in space up to 12 yr in duration. However, the nuclear radiation produced by the radioactive isotopes may interfere with the successful operation of the spacecraft electronics as well as with the sensitive particle and flux detectors that constitute the space science experiments. These interferences may cause spurious count rates, unwanted signal noises, or changes in material properties. Thus, the nuclear radiations emitted by the radioisotopes provide significant neutron and photon radiation exposure which must be determined and studied.

This study was undertaken to determine the sources of neutron and gamma radiation and their emitted spectrum. Such information must be known before it is possible to determine the extent of the nuclear detector instrument response to the radiation produced by the isotopes. During this investigation, the following were performed:

- (1) The nuclear properties of plutonium dioxide fuel components were obtained from the literature.
- (2) Sources of gamma radiation produced by the primary plutonium isotope decays, and by the fuel contaminants (which may change with fuel processing methods), were identified and their intensities determined.
- (3) For each of the gamma source intensities identified in (2), the gamma fluxes were calculated for three different thicknesses of fuel in a typical RTG capsule. The gamma fluxes were determined at the capsule surface as well as at positions exterior to the capsule. The results of this study will be useful for assessing the effects of plutonium isotopes, of fuel contamination, and of fuel thickness (selfshielding) for periods of time beginning with the fresh (immediately after chemical separation) fuel and extending up to 18-yr-old fuel.

II. Description

A. Isotopic Composition and Nuclear Characteristics

The production grade of plutonium 238 product fuel consists of a mixture of plutonium isotopes having the nominal weight distribution as follows (Ref. 1):

Isotope	Abundance (wt %)
²³⁸ Pu	81.0
²³⁹ Pu	15.0
240 Pu	2.9
241 Pu	0.8
²⁴² Pu	0.1
²³⁶ Pu	1.2×10^{-1}

For other variations in the isotope abundances in plutonium dioxide, one may review Refs. 2 and 3. Each of the isotopes listed will have nuclear characteristics which relate to the properties of natural radioactivity and neutron fission. These properties are given in Table 1 (Refs. 4–9).

B. Gamma Radiation

Gamma rays emitted by the plutonium dioxide fuel are derived from three prominent sources:

(1) Gamma radiation from plutonium isotopes and their decay products exclusive of ²³⁶Pu. The gamma photons produced by the plutonium isotopes will be due to natural radioactivity, prompt gammas from fission, and decay of fission products.

- (2) Gamma radiation from radioactive decay of ²³⁶Pu and daughter nuclides. In this study, ²³⁶Pu was considered as a fuel contaminant which varied from 1.2 parts/10⁶, weight fraction (g ²³⁶Pu/g PuO₂), in the current commercial, or production, grade of plutonium dioxide fuel, down to the 0.1 part/10⁶ desirable in the biomedical grade.
- (3) Gamma radiation from alpha particle interaction with the isotope ¹⁸O. The interaction ¹⁸O (α, n) ²¹Ne produces ²¹Ne in excited states as well as the ground states. These states above the ground state are 0.35, 1.38, 1.90, 2.40, and 2.70 MeV. The excited states of ²¹Ne decay immediately, accompanied by the gamma rays with energies equal to the difference between the excited states and the ground state energies.

The gamma radiation resulting from the 17 O (α , n) 20 Ne reaction was neglected since it has been suggested (Ref. 10) that the abundance of 17 O is one-tenth the abundance of 18 O, and the nuclear cross section is one-tenth of 18 O. This interaction has not been fully investigated and cannot be treated adequately here. Bremsstrahlung is negligible, and the inelastic gammas are a function of spacecraft geometry and materials. These also are not considered here.

The corresponding gamma spectra derived from each source are listed in Tables 2 to 5. All calculative techniques and appropriate numbers used in the study are given in Appendixes A to E. The term *plutonium product fuel* refers to the mixture of plutonium isotopes listed at the beginning of this section.

Table 1. Neutron activity of isotopes

Activity of pure isotope (disintegration per g)		Spontaneous fission half-life, yr	Neutrons/fission of pure isotope	Radioactive half-life of pure isotope, yr
²³⁸ Pu	6.21 × 10 ¹¹ 6.36 × 10 ¹¹ 6.44 × 10 ¹¹	4.9 × 10 ¹⁰ (Refs. 1, 4, 5)	2.33 ± 0.08 , spontaneous (Ref. 1) 2.75 ± 0.01^{a} 2.93 (Ref. 6)	89.6 (Ref. 1) 87.4 ^b 86.4 (Ref. 7)
²³⁰ Pu	2.27 ± 0.04 × 10°	$5.5 imes 10^{15}$ (Refs. 1, 7)	2.90 ± 0.04 induced (Refs. 1, 7, 8)	$2.44 \pm 0.05 \times 10^4$ (Refs. 1, 7
²⁴⁰ Pu	8.36 ± 0.13 × 10° 8.38 × 10°	1.2×10^{11} (Refs. 1, 9) 1.45×10^{11} (Ref. 7)	2.257 \pm 0.046 (Refs. 1, 9) Spontaneous	$6.6 \pm 0.1 \times 10^{4}$ (Ref. 1) 6.58×10^{4} (Ref. 7)
²⁴¹ Pu	$4.24 \pm 0.10 \times 10^{12}$ 3.92×10^{12} 4.16×10^{12}	- - -	 	12.95 ± 0.28 (Ref. 1) 14.0 ^b 13.2 (Ref. 7)
²⁴² Pu	$1.47 \pm 0.02 \times 10^8$	$8.5 imes 10^{10}$ (Ref. 1)	2.18 ± 0.09, spontaneous (Ref. 1)	$3.73 \pm 0.05 \times 10^{5}$ (Ref. 1)
²³⁶ Pu	1.97 × 10 ¹³	$3.5 \times 10^{9} (\text{Refs. 1, 7})$	2.30 ± 1.9 (Ref. 1)	2.85 ± 0.01 (Refs. 1, 7)

^aDunford, C. Private communication. ^bAnderson, E. Private communication.

Table 2. Gamma rays from decay of plutonium isotopes and their decay products

	Gamma ray	Abundance, % of isotopic decay						
Isotope	energy, KeV	Ref. 7	Ref. 1	Ref. 11				
³³⁸ Pu	17.0	13.0 (Ref. 3)	_	_				
	43.6	3.8×10^{-2}	3.8×10^{-2}					
	99.6	8.0 × 10 ⁻³	8.0 × 10 ⁻³	7.4 × 10 ⁻³				
		10 ⁻³						
	152.5		1.1 × 10 ⁻³	6.8 × 10 ⁻⁴				
	207.8	4.0×10^{-8}	4.0 × 10 ⁻⁶	1.2 × 10 ⁻⁵				
	742.4	9.0 × 10 ⁻⁶	_	4.5 × 10 ⁻⁶				
	765.8	3.5 × 10 ⁻⁶	5.0 × 10 ⁻⁶	2.0×10^{-5}				
	785.8	6.0 × 10 ⁻⁶		2.8×10^{-6}				
	807.6	6.0 × 10 ⁻⁶	Very small	6.0×10^{-7}				
		0.0 × 10	very sman	1.2×10^{-6}				
	851.3	_		1.2 ^ 10				
	875.0		$2.0 imes 10^{-6}$	_				
	882.9	_		7.4×10^{-7}				
	926.5		_	5.0×10^{-7}				
	941.8	_		6.0 × 10 ⁻⁷				
	1001.1			8.5 × 10 ⁻⁷				
		_	_					
	1041.8		_	2.0×10^{-7}				
	1085.1	0.81 × 10 ⁻⁶	-	1.0 × 10 ⁻⁷				
²³⁹ Pu	17.0	_		9.9 × 10 ⁻²				
				(Ref. 3)				
	38.6	7.0 × 10 ⁻¹	2.0×10^{-3}	_				
	51.6	2.0×10^{-2}	7.0 × 10 ⁻³	7.0×10^{-3}				
	129.0 121.0	5.0 × 10 ⁻³	1.5 × 10 ⁻³	_				
	(Ref. 7) (Ref. 1)	3.0 / 10	1.5 / 10					
	207.0		4.4 × 10 ⁻⁴	<u> </u>				
	340.0		6.6 × 10 ⁻⁴	-				
	375.0	1.2×10^{-3}	1.3 × 10 ⁻⁸	-				
	414.0	1.2 × 10 ⁻²	8.8 × 10 ⁻⁴					
	650.0	8.0 × 10 ⁻⁸		l _				
	770.0	2.0 × 10 ⁻⁸		_				
²⁴⁰ Pu	17.0		–					
	45.3		i —	_				
	650.0	2 × 10 ⁻⁵		–				
²⁴¹ Pu	100.0		10-3					
FU	li e		· ·					
	145.0	1.6 × 10 ⁻⁴	2.0 × 10 ⁻⁴	1.21 × 10				
				(Ref. 3)				
²⁴¹ Am	60.0	36.0	_	_				
	101.0	4 × 10 ⁻²	1	_				
		l .		_				
	208.0	6 × 10 ⁻⁴	-					
	335.0	8 × 10 ⁻⁴	-	-				
	370.0	4 × 10 ⁻⁴	-	-				
	663.0	5 × 10⁴	-	-				
	772.0	3 × 10 ⁻⁴	_	_				
³⁸⁷ Np	30.0	140						
14 b	1	14.0	_	-				
	86.0	14.0	-					
	145.0	1.0	_	_				
²⁸⁷ U	14.0	41.0	_	_				
	33.2	16.0	_	1 _				
	60.0	36.0		I				
	1	ł .	-	-				
	208.0	23.0	ı —	ı —				

Table 3. Gamma rays emitted by equilibrium fission product gammas and prompt fission gammas

	E	quilibrium fission product gamn	nas
Gamma ray energy interval, Mev	Number of photons per fission (Ref. 12)	Expression for N (E), photons/fission	Calculated number of photons per fission
0.1-0.4	1.61	The photon yield per	1.61
0.4-0.9	4.84	fission was calculated with	4.86
0.9-1.35	0.50	analytic functions fitted to	0.50
1.35-1.80	0.60	the tabulated values of	0.61
1.80-2.20	0.31	photon yield per fission	0.28
2.20-2.60	0.12	from Ref. (12).	0.11
2.60-3.00	0.01		0.04
0.1-0.4		21.5E	
0.4-0.65		5.77e ^E	1
0.65-0.9		22.60e ^{-1.1}	
0.9-0.965	1	-121.5E + 117.75	
0.965-1.35		0.38e ^{0.30}	
1.35-1.60		0.00045e ^{5.3g}	
1.601.80	ļ	586.8e ^{-3.5}	
1.80-3.0		67.8e ^{-2.3E}	
	Pro	ompt fission gammas	

The gamma rays emitted by prompt fission were assumed to have the spectral shape provided by the spontaneous fission of ²²⁵U (Ref. 16). Within the interval 0.30–1.0 MeV, the relation used was

$$N(E) = 26.8e^{-2.30K}$$
 photons/fission.

From 1.0 to 7.0 MeV the relation became

$$N(E) = 8.0e^{-1.10E}$$
 photons/fission.

These expressions were integrated numerically within each energy interval required for the subsequent RTG study. The calculations for the prompt fission gamma and the equilibrium fission product gammas are given in Appendix E.

C. Radioisotope Thermoelectric Generator Gamma Flux

The gamma sources generated in the study are tabulated for 20 gamma energy intervals with the lowest gamma energy boundary corresponding to 1 KeV and the highest corresponding to 7 MeV. The capsule power output of 1575 W(th) was extended to include 3468 and 5679 W(th) in order to provide the effect of fuel self-shielding on radiated gamma fluxes. (Additional data used in the photon radiation analysis are given in Table 12.)

The gamma ray cross sections were calculated with a corrected version of the computer program GAMLEG (Ref. 13), which averaged the cross sections in each of the given energy intervals with the gamma flux spectrum given in Ref. (1) for plutonium dioxide product fuel. GAMLEG is a computer code that numerically integrates the absorption, scattering, and total cross sections, and provides average values of the cross sections for an arbitrary selection of gamma energy intervals. In addition,

Table 4. Gamma rays from 236Pu and daughter nuclides

	Gamma ray	Abundance, % o	f isotope decay
Isotope	energy, KeV	Ref. 1	Ref. 7
²³⁶ Pu	46.0 48.0	4.7×10^{-2}	3.1 × 10 ⁻²
	(Ref. 1) (Ref. 11)	1	
	110.0	1.2 × 10 ⁻²	1.2 × 10 ⁻²
	165.0	6.6 × 10 ⁻⁴	6.6 × 10 ⁻⁴
	520.0	-	1.7 × 10 ⁻⁴
	570.0	-	1.0 × 10 ⁻⁴
	645.0	-	2.4 × 10 ⁻⁴
²¹² Pb	115.1	_	0.7
'5	176.7	_	0.2
	238.6	82.0 (Ref. 3)	47.0
	300.1	02.0 (Re1. 0)	3.2
	415.2	_	0.16
²¹² Bi	Due to $oldsymbol{eta}$ decay		
ì	(64% yield)		
	40.0	-	2.0
	288.0	-	0.5
	460.0	-	0.8
	727.0	7.3	7.1
	785.0	-	1,1
	893.0	6.6	0.42
	953.0	0.2	0.10
	1074.0 { 1079.0 \	0.66	0.60
	1513.0	0.86	0.31
	1620.0	0.00	1.8
	1800.0 /	_	'."
	1809.0	Small	0.11
²¹² Bi	Due to a deces		
51	Due to α decay		
	(36% yield) 288.2		0.28
	328.0	_	0.110
	434.0	_	0.110
1	453.0		
	I	-	0.42
	473.0 493.0		
	775.0 /		
²⁰⁸ TI	280.0	10.0	_
	511.0	25.0	23.0
	583.0	80.0	86.0
	860.0	15.0	12.0
	2614.0	100.0	100.0

Table 5. Gamma rays from $^{18}\text{O}\left(\alpha,\,\textit{n}\right){}^{21}\text{Ne}$ reaction

Gamma ray energy, MeV	Calculated activity, photons/g-s PuO ₂ (see Appendix D)
0.35	4 × 10³
1.38	8.9 × 10 ²
1.90	1.8×10^2
2.40	1.8×10^2
2.70	1.8×10^{2}

calculations can be made on the averages of the Klein-Nishina differential scattering cross section which correspond to the group-to-group scattering cross section tables. In each of the corresponding gamma energy intervals, the sources of prominent gammas emitted by the plutonium dioxide fuel are tabulated for time periods beginning with the fresh fuel and extending to 18 years of fuel aging. Tables 6 to 10 list the gamma source intensities from each contributing isotope source. The emitted gamma spectra given in Tables 6 to 10 are written in terms of three basic sources of photons which are due to the contaminants ²³⁶Pu, ¹⁸O, and the decay of the primary isotopes ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Pu.

The gamma activity for each source of radiation was applied to a plutonium 238 fueled capsule with the conceptual design given in Fig. 1. Figure 2 shows the specific geometric model of the capsule chosen for calculating the surface gamma flux (photons/s-cm²) and gamma flux at detector positions in a radial midplane extending from the capsule. The dimensions for each capsule and corresponding thermal power output are given in Table 11, and material properties were assumed as shown in Table 12.

Surface gamma fluxes were calculated with the computer program ANISN (Ref. 14) in which each of the primary gamma sources were included up to 18 yr in elapsed time periods for the 1575 W(th), 3468 W(th), and 5679 W(th) RTG designs. ANISN is a computer program which solves the one dimensional multigroup Boltzmann transport equation with anisotropic neutron or gamma scattering.

The calculated flux of the plutonium isotopes (exclusive of 236 Pu and 18 O (α , n) 21 Ne sources) and their decay products at the surface of the fuel capsule varied slightly up to 18 years, but was assumed to remain constant with time. The radiated gamma fluxes produced by the 18 O (α , n) 21 Ne reaction at time periods other than fresh are calculated by multiplying the values corresponding to the fresh 18 O (α , n) 21 Ne gamma yield by the time decay factors available in Appendix D.

The results of these calculations, indexed in Table 13 and given in Table 14, will provide the gamma flux radiated by a typical RTG for the following variations:

- (1) Fuel impurities such as ²³⁶Pu and ¹⁸O.
- (2) Fuel region thickness.
- (3) Elapsed time periods varying up to 18 yr from initial chemical separation.

Table 6. Gamma activity, T=0 yr (photons/s-g PuO_2)

			De	cay of isotopes and	daughter nuclid	es		
Energy interval, MeV	²³⁸ Pu (81 %)	²³⁹ Pu (15 %)	²⁴⁰ Pu (2.9 %)	²⁴¹ Pu (0.8 %)	²⁴¹ Am	²³⁷ U	Isotopes	²³⁶ Pu (1.2 10 ⁶)
6.0–7.0							5	
5.0-6.0							14	
4.0-5.0							45	
3.0-4.0]					147	
2.0-3.0		Į					580	
1.8-2.0		İ					264	
1.6-1.8						1	400	
1.4-1.6							408	
1.2-1.4							356	
1.0-1.2	$1.36 imes 10^{5}$						1.78×10^{3}	
0.9-1.0	8.12×10^{3}						8.56×10^{3}	
0,8-0.9	1.25 × 10⁴						1.34 × 10 ⁴	
0.7–0.8	1.24×10^{5}						1.24 × 10 ⁵	
0.6-0.7		300	43.0				1.54×10^{3}	50.0
0.5-0.6							1.25×10^{3}	56.2
0.4-0.5		2.65×10^{3}					3.97×10^{3}	
0.3-0.4		5.92×10^{3}				ļ	7.31×10^{3}	
0.2-0.3	5.45 × 10 ⁴	1.33×10^{3}					5.62 × 10 ⁴	
0.0440.2	2.17×10^{8}	3.63 × 10 ⁴		4.42 × 10 ⁴			2.17×10^{8}	9100
0.001-0.044	5.91 × 10 ¹⁰	$3.06 imes 10^{5}$					5.91 × 10 ¹⁰	

Table 6 (contd)

	Deco	ay of isotopes and d	aughter nuclides	(contd)			
Energy interval, — MeV	²¹² Pb	²¹² Bi	²⁰⁸ TI	²³⁶ Pu + daughters (1.2 10 ⁶)	Fission ^a	¹⁸ Ο (α, n) ²¹ Ne	Total
6.0–7.0					5.0		5.0
5.0-6.0					14.0		14.0
4.0-5.0					45		45
3.0-4.0					147.0		147
2.0-3.0					580	360	940
1.8-2.0					264	180	444
1.6-1.8					400		400
1.4–1.6					408		408
1.2-1.4			1		356	890	1.25×10^{3}
1.0-1.2					412		1.78×10^{3}
0.9-1.0					433		8.56×10^{3}
0.8-0.9					900		1.34×10^4
0.7-0.8					1.004×10^{5}		1.24×10^{6}
0.6-0.7				50.0	1.192×10^{3}		$1.59 imes 10^3$
0.5-0.6				56.2	1.248×10^{3}		1.30×10^{3}
0.4-0.5					$1.32 imes 10^3$		3.97×10^{3}
0.30.4					1.39×10^3	4.0×10^{3}	1.13 × 10 ⁴
0.2-0.3					$3.82 imes 10^2$		5.62 × 10⁴
0.044-0.2				9100	2.30×10^{2}		2.17×10^{8}
0.001-0.044					0.0		5.91 × 10 ¹⁰

Table 7. Gamma activity, T = 1 yr (photons/s-g PuO_2)

		Decay of isotopes and daughter nuclides													
Energy interval, MeV	²³⁸ Pu (81 %)	²⁸⁹ Pu (15%)	²⁴⁰ Pu (2.9 %)	²⁴¹ Pu (0.8 %)	²⁴¹ Am	²³⁷ U	Isotopes	²³⁶ Pu (1.2 10 ⁶)							
6.0-7.0							5								
5.0-6.0							14								
4.0-5.0							45								
3.0-4.0							146								
2.0-3.0							576								
1.8-2.0							262								
1.6-1.8							397								
1.4-1.6							405								
1.2-1.4							354								
1.0-1.2	1.35×10^{3}						1762								
0.9-1.0	8.06×10^{3}						8490								
0.80.9	1.23 × 10 ⁴						1.32 × 10 ⁴								
0.7-0.8	1.23 × 10 ⁵				129.0		1.24×10^{5}								
0.6-0.7		300.0	43.0		214.0		1741	39.2							
0.50.6							1239	44.1							
0.40.5		2.65×10^{3}					3961								
0.3-0.4		5.92×10^{3}			514.0		7812								
0.2-0.3	5.41 × 10 ⁴	1.33 × 10 ²			257.0	1.39 × 10 ⁵	1.95 × 10⁵								
0.044-0.2	2.15×10^{8}	3.63×10^{4}		4.21 × 10 ⁴	1.54×10^{7}	2.18 × 10 ⁵	2.30×10^{8}	7133							
0.001-0.044	5.86 × 10 ¹⁰	3.06 × 10 ⁵				3.45×10^{5}	5.86 × 10 ¹⁰								

Table 7 (contd)

	Dece	ay of isotopes and	daughter nuclides (contd)			1
Energy interval, MeV	²¹² Pb	²¹² Bi	²⁰⁸ Tl	²³⁶ Pu + daughters (1.2 10 ⁶)	Fission ^a	¹⁸ Ο (α, n) ²¹ Ne	Total
6.0-7.0					5.0		5
5.0-6.0					14.0		14
4.0-5.0	İ				45.0		45
3.0-4.0	į				146.0		146
2.0-3.0	İ		9797.1	9800	576.0	357	1.07×10^4
1.8–2.0					262.0	179	441
1.61.8					397.0		397
1.4–1.6					405.1		405
1.2–1.4					354.0	883	1237
1.0-1.2		536.4		536.4	412		2.30×10^{3}
0.9-1.0		19.0		19	430		8.49×10^{3}
0.8-0.9		80.0	1175.7	1255.7	894		1.44 × 10 ⁴
0.7-0.8		1560		1560	997		1.26×10^{6}
0.6-0.7				39.2	1184		1.78×10^{3}
0.5-0.6			1.07 × 10 ⁴	1.07 × 10 ⁴	1239		1.20 × 10 ⁴
0.4-0.5	46.1	193.3		239.4	1311		4.20×10^{3}
0.3-0.4		10.8		10.8	1378	3970	1.18×10^{4}
0.2-0.3	1.45 × 10 ⁴	122.5	979.7	1.56 × 10 ⁴	379		2.11 × 10 ⁶
0.044-0.2	259.3			7392.3	228		$2.30 imes 10^8$
0.001-0.044		380.4		380.4	0.0		5.86 × 10 ¹¹

Table 8. Gamma activity, T=5 yr (photons/s-g PuO_2)

_			Q.	ecay of isotopes an	d daughter nuclic	des		
Energy interval, MeV	²³⁸ Pu (81 %)	²³⁹ Pu (15%)	²⁴⁰ Pu (2.9 %)	²⁴¹ Pu (0.8 %)	²⁴¹ Am	²³⁷ U	Isotopes	²³⁶ Pu {1.2 10 ⁶ }
6.0-7.0							5	
5.0-6.0							14	
4.0-5.0				į į			44	
3.0-4.0							142	
2.0-3.0							561	
1.8-2.0				i			255	
1.6–1.8				1			387	
1.4–1.6							395	
1.2-1.4							344	
1.0-1.2	1.31 × 10 ³						1.71×10^{3}	
0.9–1.0	7.81×10^{3}						8.23×10^{3}	
0.8-0.9	1.20 × 10 ⁴						1.29×10^4	
0.7–0.8	1.19 × 10 ⁵				581.0		1.21×10^{5}	
0.6-0.7		300.0	43.0		969.0		2.47×10^{3}	14.8
0.5-0.6							1.20×10^{3}	16.7
0.4-0.5		2.65×10^{3}					3.93×10^{3}	
0.3-0.4		5.92×10^{3}			2325.0		9.59 × 10 ⁸	
0.2-0.3	5.24 × 10 ⁴	1.33×10^{3}			1163.0	1.14 × 10 ⁶	1.69×10^{5}	
0.044-0.2	2.09×10^{8}	3.63×10^4		3.45 × 10 ⁴	6.98×10^{7}	1.79 × 10 ⁵	2.79×10^{8}	2693
0.001-0.044	5.69 × 10 ¹⁰	3.06×10^{5}				2.83×10^{5}	5.69×10^{10}	

Table 8 (contd)

E	Deco	y of isotopes and d	aughter nuclides (c	ontd)			
Energy interval, MeV	²¹² Pb	²¹² Bi	²⁰⁸ Tl	²³⁶ Pv + daughters (1.2 10 ⁶)	Fission ^a	¹⁸ Ο (α, n) ²¹ Ne	Total
6.0-7.0			•		5.0		5.0
5.0-6.0					14.0		14
4.0-5.0				1	44.0		44.0
3.0-4.0					142		142
2.0-3.0			1.15×10^{5}	1.15 × 10 ⁵	561	346	1.16×10^{6}
1.8-2.0					255	173	428
1.6-1.8					387		387
1.4-1.6					395		395
1.2-1.4					344	856	1.20×10^{3}
1.0-1.2		6.3×10^{3}		6.30×10^{3}	401		8.01×10^{3}
0.9–1.0		223		223	419		8.45×10^{3}
0.8-0.9		938	1.38×10^4	1.48 × 10 ⁴	870		2.77×10^4
0.7-0.8		1.83 × 10 ⁴		1.83 × 10 ⁴	971		1.39 × 10 ⁵
0.6-0.7				14.8	1.15×10^{3}		2.48×10^{3}
0.5–0.6			1.24×10^{5}	1.25 × 10 ⁵	1.21 × 10 ⁸		1.26 × 10 ⁶
0.4-0.5	541.0	2.27×10^{3}		2.81×10^{3}	1.28×10^{3}		6.74×10^{3}
0.3-0.4		127		127	1.34×10^3	3850	1.36 × 10 ⁴
0.2-0.3	1.70 × 10 ⁵	1.44×10^{3}	1.15×10^4	1.83 × 10 ⁵	369		3.52×10^{5}
0.044-0.2	3045.0			5.73 × 10 ²	222		2.79 × 10 ⁶
0.001-0.044		4.47×10^{3}		443	0.0		5.69 × 10 ¹¹

Table 9. Gamma activity, $T = 10 \text{ yr (photons/s-g PuO}_2)$

			D	ecay of isotopes an	d daughter nuclic	des		,
Energy interval, MeV	²³⁸ Pu (81 %)	²³⁹ Pu (15%)	²⁴⁰ Pu (2.9 %)	²⁴¹ Pu (0.8 %)	²⁴¹ Am	²³⁷ U	Isotopes	²³⁶ Pu (1.2 10 ⁶)
6.0-7.0							5	
5.0-6.0							13	
4.0-5.0							44	
3.0-4.0							138	
2.0-3.0							543	
1.8–2.0							247	
1.6–1.8							375	
1.41.6							382	
1.2-1.4							334	
1.0-1.2	$1.26 imes 10^3$						1.65×10^{3}	
0.9-1.0	7.52×10^{3}					!	7.93×10^{3}	
0.8-0.9	1.15 × 10 ⁴						1.24 × 10 ⁴	
0.7-0.8	1.15×10^{5}				1039		1.17 × 10 ⁵	
0.6-0.7		3.0×10^{2}	43.0		1732		3.20×10^{3}	4.4
0.50.6							1.17×10^{3}	4.9
0.4-0.5		2.65×10^{3}					3.89×10^{3}	
0,3-0.4		5.92 × 10 ³			4158.0		1.14 × 10⁴	
0.2-0.3	5.05 × 10 ⁴	1.33×10^{3}			2079.0	$0.89 imes 10^5$	1.43×10^{5}	
0.044-0.2	2.01×10^{8}	3.63 × 10 ⁴		2.70 × 10 ⁴	1.25×10^{8}	1.40×10^{5}	3.26 × 10 ⁸	792
0.001-0.044	5.47×10^{10}	3.06 × 10 ⁸				2.21 × 10 ⁵	5.47 × 10 ¹⁰	

Table 9 (contd)

<u>.</u>	Dec	ay of isotopes and d	aughter nuclides (d	ontd)			
Energy interval, MeV	²¹² Pb	²¹² Bi	²⁰⁸ T]	²³⁶ Pv + daughters (1.2 10 ⁶)	Fission"	¹⁸ Ο (α, n) ²¹ Ne	Total
6.0-7.0					5		5
5.0-6.0					13		13
4.0-5.0					44		44
3.0-4.0					138		138
2.0-3.0			2.04 × 10 ⁵	2.04 × 10 ⁵	543	333	2.05 × 10 ⁶
1.8-2.0					247	167	414
1.61.8					375		375
1.4–1.6					382		382
1.2-1.4					334	824	1.16×10^{3}
1.0-1.2		1.11 × 10 ⁴		1.113 × 10 ⁴	389		1.28 × 10 ⁴
0.9-1.0		400		400	406		8.33×10^{3}
0.8-0.9		1.66×10^{3}	2.44×10^4	2.61 × 10 ⁴	843		$3.85 \times 10^{\circ}$
0.7-0.8		3.24×10^4		3.24 × 10 ⁴	941	'	1.50 × 10 ⁴
0.6-0.7				4.4	1117.0		3.20 × 10
0.5-0.6			2.22×10^{5}	2.22 × 10 ⁶	1170.0		2.23 × 10 ^t
0.40.5	957.0	4.01×10^{3}		4.97×10^{3}	1237		8.86 × 10
0.3-0.4		224		224	1301	3.7×10^3	1.53 × 10°
0.20.3	3.0 × 10 ⁵	2.57×10^{3}	2.04 × 10 ⁴	3.23 × 10 ⁶	358		4.66 × 10
0.044-0.2	5387.0			6.18 × 10 ³	216		3.26 × 10 ⁶
0.001-0.044		7.9×10^{s}		7.90×10^{3}	0.0		5.47 × 10

Table 10. Gamma activity, T = 18 yr (photons/s-g PuO_2)

			De	cay of isotopes an	d daughter nucli	des		
Energy interval, MeV	²³⁸ Pu (81 %)	²³⁹ Pu (15 %)	³⁴⁰ Pu (2.9 %)	²⁴¹ Pu (0.8 %)	²⁴¹ Am	²⁸⁷ U	Isotopes	²³⁶ Pu (1.2 10 ⁶)
6.0–7.0							5	
5.0-6.0							13	
4.0-5.0							40	
3.0-4.0							131	
2.0–3.0							519	
1.82.0							236	
1.6~1.8							358	
1.41.6							365	
1.2–1.4				ţ			318	
1.0-1.2	1.19×10^{3}						1.56×10^{3}	
0.9-1.0	7.07×10^{3}						7.46×10^{3}	
0.8-0.9	1.08 × 10 ⁴						1.16 × 10⁴	
0.7-0.8	1.08×10^{5}				1558.0		1,10 × 10 ⁵	
0.6-0.7	·	300	43		2546.0		3.96×10^{3}	1.0
0.5-0.6							1.12×10^{3}	1.0
0.4_0.5		2.65×10^{3}					3.83×10^{3}	
0.3-0.4		5.92×10^{3}			6231.0		1.34 × 10 ⁴	
0.2-0.3	4.74 × 10 ⁴	1.33×10^{3}			3116.0	0.60×10^{5}	1.12 × 10 ⁵	
0.044-0.2	1.89×10^{8}	3.63 × 10 ⁴		1.81 × 10 ⁴	1.87 × 10*	0.94×10^{5}	3.76×10^{8}	118.3
0.001-0.044	5.14×10^{10}	$3.06 imes 10^{5}$				1.49×10^{5}	5.14 × 10 ¹⁰	

Table 10 (contd)

	Dece	ay of isotopes and d	aughter nuclides (d	ontd)			
Energy interval, MeV	²¹² Pb	²¹² Bi	²⁰⁸ TI	²³⁶ Pu + daughters (1.2 10 ⁶)	Fission ^a	¹⁸ Ο (α, n) ²¹ Ne	Total
6.0–7.0					5		5
5.06.0	1				13	!	13
4.0-5.0					40		40
3.0-4.0					131		131
2.0-3.0		•	2.34×10^{5}	2.34×10^{5}	519	272	2.35×10^{6}
1.8-2.0	ŀ				236	157	393
1.6-1.8					358		358
1.4-1.6					365		365
1.2-1.4					318	774	1.09×10^{3}
1.0-1.2		1.29×10^{4}		1.28 × 10 ⁴	371		1.45 × 10 ⁴
0.9-1.0		455		455	387		7.91×10^{3}
0.8-0.9		1910	2.81 × 10 ⁴	3.00 × 10 ⁴	805		4.16 × 10 ⁴
0.7-0.8		3.73×10^{4}		3.73 × 10 ⁴	898		1.48 × 10 ⁶
0.6-0.7				1.0	1066		3.96×10^{3}
0.50.6			2.56 × 10 ⁵	2.56×10^{5}	1116		2.57 × 10 ⁶
0.4-0.5	1103.0	4623		5.73×10^{3}	1180		9.56×10^{3}
0.30.4		258		258	1241	3480	1.71 × 10 ⁴
0.2-0.3	3.46 × 10 ⁵	2930.0	2.34 × 10 ⁴	3.72×10^{5}	342	1	4.84 × 10 ⁵
0.044-0.2	6202.0			6.32×10^{3}	206		3.76×10^{8}
0.001-0.044		9096.0	İ	9.1 × 10 ³	0.0		5.14×10^{11}

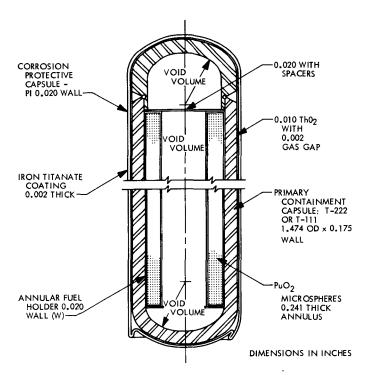


Fig. 1. Conceptual design of the ²³⁸Pu fueled capsule

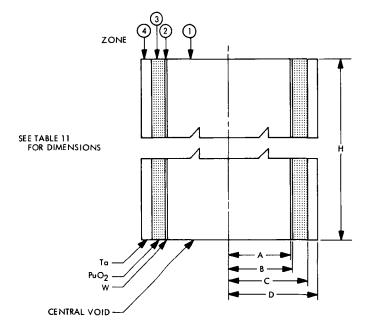


Fig. 2. Fuel capsule geometry for gamma flux analysis

To determine the radiated gamma surface fluxes, one can do as follows for a given fuel thickness: (1) select the gamma source and its time of consideration, and read the corresponding radiated gamma fluxes given in Table 14;

Table 11. Assumed capsule dimensions

Dimension,	Caps	sule power output, \	V(th)
cm	1575	3468	5679
A	3.234	3.234	3.234
В	3.285	3.285	3.285
С	4.023	4.7610	5,4990
D	4.519	5.2570	5.9950
н	32.188	32.188	32.188

Table 12. Assumed material properties

Zone	Material	Density, g/cm³	Atomic density, ^a atoms/cm ³	Modified ^b atomic density
1	Void	0.0	0.0	
2	Tungsten (W)	19.3	0.06319	4.67628
3	Plutonium dioxide fuel (PuO ₂) ^c	7.308 ^d	0.016320	1.79520
	Plutonium (Pu)		0.016320	1.53408
	Oxygen (O)	_	0.03264	0.26112
4	Tantalum (Ta)	16.6	0.05526	4.0338
5	Tungsten (W)	19.3	0.06319	4.6763

 ${}^{\mathrm{a}}$ This density corresponds to the P_{0} Legendre expansion term in the Klein-Nishina cross sections.

^bThis density corresponds to the $P_1 - P_5$ Legendre expansion terms in the Klein-Nishina cross sections. The $P_1 - P_5$ Legendre terms of hydrogen were used and corrected by the atomic number Z of the isotope used in the analysis.

^cA thermal power density of 2.888 W(th)/cm³ results, assuming 0.396 W(th)/g-PuO₂.

 $^{\rm d}$ The plutonium dioxide fuel density 10.7 g/cm $^{\rm 3}$ was multiplied by the volume fraction 0.683.

and (2) numerically sum all gamma sources to obtain the correct total radiated gamma flux. The radiated gamma flux due to the ²³⁶Pu isotope corresponds to a concentration of 1.2 parts/10⁶ of ²³⁶Pu and can be corrected for the proper concentration of ²³⁶Pu. For example, if ²³⁶Pu concentration is 0.1 part/10⁶ in the 1575 W(th) capsule, simply multiply the radiated flux corresponding to this capsule at the given age, as shown in Table 14, by the factor 0.1/1.2. The product will be the gamma flux emitted by ²³⁶Pu plus daughter nuclides present in the 0.1 part/10⁶ concentration.

The computer code QADB was used to calculate the gamma exposure rates at receptor or detector positions extending radially and axially from each RTG. In QADB (Refs. 15 and 16), each source of gamma energy is computed as a point kernel, which is attenuated by the distance between the source and detector position as well as the material composition along the source—detector line. The computed attenuated flux is the uncollided gamma flux due to single scattering events multiplied by a suitable

Table 13. Index for Tables 14 and 15

Source number	Gamma source	Time, yr	Capsule power, W(th)
1	²⁸⁸ Pu + isotopes + decay products	Fresh	1575
2	¹⁸ Ο (α, n) ²¹ Ne	Fresh	
3	²³⁶ Pu decay + daughter nuclides	Fresh	
4	²³⁶ Pu decay + daughter nuclides	1	
5	²³⁶ Pu decay + daughter nuclides	5	
6	²³⁶ Pu decay + daughter nuclides	10	
7	²³⁶ Pu decay + daughter nuclides	18	
8	²³⁸ Pu + isotopes + decay products	Fresh	3468
9	¹⁸ O (α, n) ²¹ Ne	Fresh	
10	²³⁶ Pu decay + daughter nuclides	Fresh	
11	²⁹⁶ Pu decay + daughter nuclides	1	
12	²³⁶ Pu decay + daughter nuclides	5	
13	²³⁶ Pu decay + daughter nuclides	10	
14	²³⁶ Pu decay + daughter nuclides	18	
15	²³⁸ Pu + isotopes + decay products	Fresh	5679
16	¹⁸ Ο (α, π) ²¹ Ne	Fresh	
17	²³⁶ Pu decay + daughter nuclides	Fresh	
18	²³⁶ Pu decay + daughter nuclides	1	
19	²³⁶ Pu decay + daughter nuclides	5	
20	²³⁶ Pu decay + daughter nuclides	10	
21	²³⁶ Pu decay + daughter nuclides	18	

buildup factor to determine the collided gamma flux, or the attenuation, which includes multiple scattering events between the source and detector positions.

The gamma flux rates presented in Table 15 are computed for different detector positions extending from each of the three capsule designs and for each of the various gamma source intensities given in Tables 6 to 10. The gamma flux rates have been summed for each of the flux rates corresponding to the isotope composition of the production grade of PuO₂ (Refs. 7 and 17) and are plotted in Figs. 3 through 8. For any variation in the isotopes ¹⁸O and ²³⁶Pu found in the commercial grade of PuO₂, one can select the gamma flux rates given in Table 15 and multiply the gamma flux produced by ¹⁸O or ²³⁶Pu by the ratio of the new concentration to the concentration used in this study (0.2% ¹⁸O in natural oxygen and 1.2 parts/10⁶ ²³⁶Pu in product fuel).

The emitted gamma spectrum will be assumed to remain unchanged from the capsule surface (radial midplane only) to various detector positions in the same radial midplane. For this reason, only total gamma flux rates have been tabulated for the exterior detector positions.

Table 14. Plutonium dioxide: gamma photon surface fluxes at midplane

Time	os and decay products* O yr ver 1575 W(th)	Gamma source 2: ¹⁸ Ο (α, n) ²¹ Ne Time Capsule pov	0 yr ver 1575 W(th)	Gamma source 3: ^{D36} Pu decay and daughter nuclides Time 0 yr Capsule power 1575 W(th)	
Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s-cm²	Energy interval, MeV	Flux, photons/s—cm²
6.0–7.0	1.09274 × 10 ¹	6.07.0	0.0	6.0-7.0	0.0
5.0-6.0	3.19061 × 10 ¹	5.0-6.0	0.0	5.0-6.0	0.0
4.0-5.0	1.06562×10^{2}	4.0-5.0	0.0	4.0-5.0	0.0
3.0-4.0	3.59364×10^{2}	3.0-4.0	0.0	3.0-4.0	0.0
2.0-3.0	1.38919×10^{3}	2.0-3.0	8.24061×10^{2}	2.0-3.0	0.0
1.8-2.0	6.23476×10^{2}	1.8–2.0	4.12197×10^{2}	1.82.0	0.0
1.6-1.8	9.09526×10^{2}	1.6–1.8	7.61248×10^{2}	1.6-1.8	0.0
1.4-1.6	9.56260×10^{2}	1.4–1.6	7.68004×10^{1}	1.4–1.6	0.0
1.2-1.4	8.99081 × 10 ²	1.2-1.4	1.56016×10^{3}	1.2–1.4	0.0
1.0-1.2	2.92849×10^{3}	1.01.2	3.06084×10^{2}	1.0–1.2	0.0
0.9-1.0	1.03959 × 10 ⁴	0.9–1.0	1.50432×10^{2}	0.9-1.0	0.0
0.8-0.9	1.49095×10^4	0.8-0.9	1.45684×10^{2}	0.8-0.9	0.0
0. <i>7-</i> -0.8	1.02619×10^{6}	0.7-0.8	1.40533×10^{2}	0.7-0.8	0.0
0.60.7	2.04398×10^4	0.6-0.7	1.28879×10^{2}	0.6-0.7	2.81568×10^{3}
0.5-0.6	1.65722 × 10 ⁴	0.5-0.6	1.15888×10^{2}	0.5-0.6	2.53716×10^{1}
0.4-0.5	1.24608×10^4	0.4-0.5	9.64589 × 10 ¹	0.4_0.5	7.83508
0.3-0.4	7.37900×10^{3}	0.3-0.4	2.31330×10^{2}	0.3-0.4	4.09562
0.2-0.3	2.57823×10^{3}	0.2-0.3	3.88954 × 10 ¹	0.2-0.3	1.29844
0.044-0.2	7.84181×10^{1}	0.044-0.2	1.04096	0.0440.2	4.30893×10^{-2}
0.001-0.044	8.24486×10^{-3}	0.001-0.044	9.05290 × 10 ⁻⁶	0.001-0.044	3.67550×10^{-6}
Total	1.95648 × 10 ⁵	Total	$\frac{1}{4.30457} \times 10^{3}$	Total	6.68006 × 10 ¹

Table 14 (contd)

Time	daughter nuclides 1 yr wer 1575 W(th)	Time	daughter nuclides 5 yr ver 1575 W(th)	Time	daughter nuclides 10 yr er 1575 W(th)
Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²
6.0–7.0	0.0	6.0-7.0	0.0	6.0-7.0	0.0
5.0-6.0	0.0	5.0-6.0	0.0	5.0-6.0	0.0
4.0-5.0	0.0	4.0–5.0	0.0	4.0-5.0	0.0
3.0-4.0	0.0	3.0-4.0	0.0	3.0-4.0	0.0
2.0-3.0	2.24345 × 10 ⁴	2.0–3.0	2.63198 × 10 ⁶	2.0–3.0	4.66864×10^{5}
1.8-2.0	1.23577×10^{3}	1.8-2.0	1.44979 × 10 ⁴	1.8–2.0	2.57164 × 10 ⁴
1.6-1.8	1.24820×10^{a}	1.6-1.8	1.46437 × 10 ⁴	1.6-1.8	2.59752×10^4
1.4-1.6	1.26904×10^{3}	1.4–1.6	1.48882 × 10 ⁴	1.4–1.6	2.64089×10^4
1.2–1.4	1.30055×10^{3}	1.2-1.4	1.52578 × 10 ⁴	1.2–1.4	2.70645×10^4
1.0–1.2	2.09323×10^{3}	1.0-1.2	2.45596 × 10 ⁴	1.0–1.2	4.35066×10^{4}
0.9–1.0	7.86781×10^{2}	0.9–1.0	9.23051×10^3	0.9–1.0	1.63718×10^4
0.8-0.9	2.00102×10^{3}	0,8-0.9	2.35164×10^4	0.8-0.9	4.16319×10^4
0.7-0.8	2.19842×10^{3}	0.7-0.8	2.58259 × 10 ⁴	0.7-0.8	4.57185×10^4
0.6-0.7	1.11686×10^3	0.6-0.7	1.28622×10^4	0.6–0.7	2.27761 × 10 ⁴
0.5-0.6	4.77593×10^{3}	0.5-0.6	5.58239 × 10 ⁴	0,5-0.6	9.89354×10^4
0.3-0.5	1.61373×10^{3}	0.4-0.5	1.88721×10^4	0.4-0.5	3.34397 × 10 ⁴
	9.36795×10^{2}	0.4=0.5	1.09120 × 10 ⁴	0.3-0.4	1.93378 × 10 ⁴
0.3-0.4	3.21746×10^{2}	1	3.76080×10^3	0.2-0.3	6.66218×10^{3}
0.2–0.3		0.2-0.3	* " '	0.044-0.2	1.89959×10^{2}
0.044-0.2	8.82168	0.044-0.2	8.25528 × 10 ¹	0.044=0.2	5.18950 × 10 ⁻³
0.001-0.044	5.39828 × 10 ⁻⁴	0.001-0.044	8.40405 × 10 ⁻³		
Total	4.33414 × 10 ⁴	Total	5.07932 × 10 ⁸	Total	9.00599 × 10 ⁸
Gamma source 7:		Gamma source 8:		Gamma source 9:	
²³⁶ Pu decay and	daughter nuclides	²³⁸ Pu + isotope	s 🕂 decay products ^a	¹⁸ Ο (α, n) ²¹ Ne Time	
Time Capsule po	18 yr wer 1575 W(th)	Time Capsule pov	Time 0 yr Capsule power 3468 W(th)		0 yr ver 3468 W(th)
Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²
6.0-7.0	0.0	6.0–7.0	3.11766 × 10 ¹	6.0-7.0	0.0
'		5.0-6.0	9.15588 × 10 ¹	5.0-6.0	0.0
5.0-6.0	0.0	4.0-5.0	3.05956×10^{2}	4.0-5.0	0.0
4.0-5.0	0.0			3.0-4.0	0.0
3.0-4.0	0.0	3.0-4.0	1.03326×10^3	I '	
2.0–3.0	5.35797 × 10 ⁵	2.0–3.0	3.96415×10^3	2.0–3.0	1.16819 × 10 ³
1.8–2.0	2.95135 × 10 ⁴	1.8–2.0	1.77177×10^3	1.8–2.0	5.82781×10^{2}
	2.98104×10^4	1.6–1.8	2.57036×10^3	1.6–1.8	1.20013×10^{2}
1.6–1.8		1.4–1.6	2.70777×10^{3}	1.4–1.6	1.21695×10^2
1.4–1.6	3.03082 × 10 ⁴				2.12704×10^{3}
1.4–1.6 1.2–1.4	3.10606 × 10 ⁴	1.2–1.4	2.55789×10^{3}	1.2–1.4	
1.4–1.6 1.2–1.4 1.0–1.2	3.10606 × 10 ⁴ 5.00270 × 10 ⁴	1.2–1.4 1.0–1.2	5.34024×10^3	1.0–1.2	4.62504×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0	3.10606 × 10 ⁴ 5.00270 × 10 ⁴ 1.87957 × 10 ⁴	1.2–1.4	5.34024×10^{3} 1.44950×10^{4}	1.0–1.2 0.9–1.0	4.62504×10^{2} 2.27767×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2	3.10606 × 10 ⁴ 5.00270 × 10 ⁴ 1.87957 × 10 ⁴ 4.78951 × 10 ⁴	1.2–1.4 1.0–1.2	5.34024×10^3	1.0–1.2 0.9–1.0 0.8–0.9	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0	3.10606 × 10 ⁴ 5.00270 × 10 ⁴ 1.87957 × 10 ⁴	1.2–1.4 1.0–1.2 0.9–1.0	5.34024×10^{3} 1.44950×10^{4}	1.0–1.2 0.9–1.0	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9	3.10606 × 10 ⁴ 5.00270 × 10 ⁴ 1.87957 × 10 ⁴ 4.78951 × 10 ⁴	1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9	5.34024×10^{3} 1.44950×10^{4} 2.06496×10^{4}	1.0–1.2 0.9–1.0 0.8–0.9	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2} 2.11329×10^{2} 1.91692×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8	3.10606 × 10 ⁴ 5.00270 × 10 ⁴ 1.87957 × 10 ⁴ 4.78951 × 10 ⁴ 5.27127 × 10 ⁴	1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8	5.34024 × 10 ³ 1.44950 × 10 ⁴ 2.06496 × 10 ⁴ 1.28623 × 10 ⁵	1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2} 2.11329×10^{2} 1.91692×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7	3.10606 × 10 ⁴ 5.00270 × 10 ⁴ 1.87957 × 10 ⁴ 4.78951 × 10 ⁴ 5.27127 × 10 ⁴ 2.61946 × 10 ⁴	1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7	5.34024 × 10 ³ 1.44950 × 10 ⁴ 2.06496 × 10 ⁴ 1.28623 × 10 ⁵ 2.80276 × 10 ⁴	1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7	4.62504×10^{2} 2.27767×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6	3.10606×10^4 5.00270×10^4 1.87957×10^4 4.78951×10^4 5.27127×10^4 2.61946×10^4 1.14114×10^6	1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6	5.34024×10^{3} 1.44950×10^{4} 2.06496×10^{4} 1.28623×10^{5} 2.80276×10^{4} 2.30238×10^{4}	1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2} 2.11329×10^{2} 1.91692×10^{2} 1.69937×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5	3.10606×10^4 5.00270×10^4 1.87957×10^4 4.78951×10^4 5.27127×10^4 2.61946×10^4 1.14114×10^6 3.85234×10^4	1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	5.34024×10^{3} 1.44950×10^{4} 2.06496×10^{4} 1.28623×10^{5} 2.80276×10^{4} 2.30238×10^{4} 1.67140×10^{4}	1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2} 2.11329×10^{2} 1.91692×10^{2} 1.69937×10^{2} 1.38817×10^{2} 2.64971×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5 0.3–0.4	3.10606×10^4 5.00270×10^4 1.87957×10^4 4.78951×10^4 5.27127×10^4 2.61946×10^4 1.14114×10^6 3.85234×10^4 2.22684×10^4	1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	5.34024×10^{3} 1.44950×10^{4} 2.06496×10^{4} 1.28623×10^{5} 2.80276×10^{4} 2.30238×10^{4} 1.67140×10^{4} 9.72466×10^{3}	1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5 0.3–0.4	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2} 2.11329×10^{2} 1.91692×10^{2} 1.69937×10^{2} 1.38817×10^{2}
1.4–1.6 1.2–1.4 1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5 0.3–0.4 0.2–0.3	3.10606×10^4 5.00270×10^4 1.87957×10^4 4.78951×10^4 5.27127×10^4 2.61946×10^4 1.14114×10^6 3.85234×10^4 2.22684×10^4 7.67152×10^3	1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	5.34024×10^{3} 1.44950×10^{4} 2.06496×10^{4} 1.28623×10^{5} 2.80276×10^{4} 2.30238×10^{4} 1.67140×10^{4} 9.72466×10^{3} 3.33692×10^{2}	1.0–1.2 0.9–1.0 0.8–0.9 0.7–0.8 0.6–0.7 0.5–0.6 0.4–0.5 0.3–0.4 0.2–0.3	4.62504×10^{2} 2.27767×10^{2} 2.20093×10^{2} 2.11329×10^{2} 1.91692×10^{2} 1.69937×10^{2} 1.38817×10^{3} 2.64971×10^{2} 4.86122×10^{1}

Table 14 (contd)

Time	: daughter nuclides 0 yr wer 3468 W(th)	Time	: daughter nuclides 1 yr ver 3468 W(th)	Time	: daughter nuclides 5 yr ver 3468 W(th)
Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²
6.0–7.0	0.0	6.0-7.0	0.0	6.0-7.0	0.0
5.0-6.0	0.0	5.0-6.0	0.0	5.0-6.0	0.0
4.0-5.0	0.0	4.0-5.0	0.0	4.0–5.0	0.0
3.0-4.0	0.0	3.0-4.0	0.0	3.0-4.0	0.0
2.0-3.0	0.0	2.0–3.0	3.18032 × 10 ⁴	2.0–3.0	3.73110×10^{6}
1.8-2.0	0.0	1.8-2.0	1.95593×10^3	1.8–2.0	2.29467×10^4
1.6-1.8	0.0	1.6–1.8	1.98543×10^3	1.6–1.8	2.32928×10^4
1.4-1.6	0.0	1.4–1.6	2.02939×10^{3}	1.4–1.6	2.38085×10^4
1.2-1.4	0.0	1.2-1.4	2.08968×10^{3}	1.2–1.4	2.45158×10^4
1.0-1.2	0.0	1.0-1.2	3.14682×10^3	1.0–1.2	3.69208×10^4
0.9-1.0	0.0	0.9-1.0	1.24267×10^3	0.9–1.0	1.45790×10^4
0.8-0.9	0.0	0.8-0.9	2.76248×10^{3}	0.8_0.9	3.24601 × 10 ⁴
0.7-0.8	0.0	0.7-0.8	2.97406×10^{3}	0.7–0.8	3.49340×10^4
0.6-0.7	3.31110×10^{1}	0.6-0.7	1.62855×10^3	0.6-0.7	1.88242×10^4
0.5-0.6	2.90787 × 10 ¹	0.5-0.6	5.70391 × 10³	0.5–0.6	6.66815 × 10⁴
0.4-0.5	9.14273	0,4-0,5	2.07093×10^{3}	0.4-0.5	2.42265×10^4
0.3-0.4	4.73201	0.3-0.4	1.20675×10^{3}	0.3-0.4	1.40727×10^4
0.2-0.3	1,49087	0.2-0.3	4.09212×10^{2}	0.2-0.3	4.78542×10^{3}
0.044-0.2	4.81974 × 10 ⁻²	0.044-0.2	1.13384×10^{1}	0.044-0.2	1.12511×10^{2}
0.001-0.044	5.84410 × 10 ⁻⁶	0.001-0.044	5.83672×10^{-4}	0.001-0.044	1.31744 × 10 ⁻²
Total	${7.76035} \times 10^{1}$	Total	${6.10203} \times 10^4$	Total	7.15271 × 10 ⁵
Gamma source 13	1.	Gamma source 14	,	Gamma source 15	
	daughter nuclides		236Pu decay and daughter nuclides 238Pu + isotopes		
Time	10 yr wer 3468 W(th)	Time	18 yr ver 3468 W(th)	Time	0 yr wer 5679 W(th)
Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s-cm²	Energy interval, MeV	Flux, photons/s—cm²
/*1 C *	photons/s-cm		0.0	6.0-7.0	5.41158 × 10 ¹
	•	6.0-7.0			0.11100 / 10
6.0–7.0	0.0	6.0–7.0 5.0–6.0			1.58637×10^{2}
6.0–7.0 5.0–6.0	0.0	5.0-6.0	0.0	5.0-6.0	1.58637×10^{2} 5.31846×10^{2}
6.0–7.0 5.0–6.0 4.0–5.0	0.0 0.0 0.0	5.0-6.0 4.0-5.0	0.0	5.0-6.0 4.0-5.0	5.31846×10^{2}
6.0–7.0 5.0–6.0 4.0–5.0 3.0–4.0	0.0 0.0 0.0 0.0	5.0-6.0 4.0-5.0 3.0-4.0	0.0 0.0 0.0	5.0-6.0 4.0-5.0 3.0-4.0	5.31846×10^{2} 1.79496×10^{3}
6.0–7.0 5.0–6.0 4.0–5.0 3.0–4.0 2.0–3.0	0.0 0.0 0.0 0.0 0.0 6.61826 × 10 ⁵	5.0–6.0 4.0–5.0 3.0–4.0 2.0–3.0	0.0 0.0 0.0 7.59546 × 10 ⁵	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴	5.0–6.0 4.0–5.0 3.0–4.0 2.0–3.0 1.8–2.0	0.0 0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8	0.0 0.0 0.0 0.0 6.61826 \times 10 ⁵ 4.07030 \times 10 ⁴ 4.13170 \times 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8	0.0 0.0 0.0 7.59546 \times 10 ⁵ 4.67129 \times 10 ⁴ 4.74175 \times 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6	0.0 0.0 0.0 0.0 6.61826 \times 10 ⁵ 4.07030 \times 10 ⁴ 4.13170 \times 10 ⁴ 4.22317 \times 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6	0.0 0.0 0.0 7.59546×10^{5} 4.67129×10^{4} 4.74175×10^{4} 4.84673×10^{4}	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4	0.0 0.0 0.0 0.0 6.61826×10^{5} 4.07030×10^{4} 4.13170×10^{4} 4.22317×10^{4} 4.34864×10^{4}	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4	0.0 0.0 0.0 7.59546 \times 10 ⁵ 4.67129 \times 10 ⁴ 4.74175 \times 10 ⁴ 4.84673 \times 10 ⁴ 4.99072 \times 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.41351×10^{3}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2	0.0 0.0 0.0 7.59546 \times 10 ⁵ 4.67129 \times 10 ⁴ 4.74175 \times 10 ⁴ 4.84673 \times 10 ⁴ 4.99072 \times 10 ⁴ 7.52007 \times 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.41351×10^{3} 7.61123×10^{3}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0	0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.41351×10^{3} 7.61123×10^{3} 1.69881×10^{4}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9	0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.41351×10^{3} 7.61123×10^{3} 1.69881×10^{4} 2.39657×10^{4}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.41351×10^{3} 7.61123×10^{3} 1.69881×10^{4} 2.39657×10^{4} 1.38142×10^{5}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.41351×10^{3} 7.61123×10^{3} 1.69881×10^{4} 2.39657×10^{4} 1.38142×10^{5} 3.19004×10^{4}
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴ 1.18180 × 10 ⁵	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6	0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴ 1.36282 × 10 ⁵	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6	5.31846 × 10 ² 1.79496 × 10 ³ 6.85509 × 10 ³ 3.05964 × 10 ³ 4.41956 × 10 ³ 4.65961 × 10 ³ 4.41351 × 10 ³ 7.61123 × 10 ³ 1.69881 × 10 ⁴ 2.39657 × 10 ⁴ 1.38142 × 10 ⁵ 3.19004 × 10 ⁴ 2.60728 × 10 ⁴
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴ 1.18180 × 10 ⁵ 4.29301 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴ 1.36282 × 10 ⁵ 4.94402 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	5.31846 × 10 ² 1.79496 × 10 ³ 6.85509 × 10 ³ 3.05964 × 10 ³ 4.41956 × 10 ³ 4.65961 × 10 ³ 4.41351 × 10 ³ 7.61123 × 10 ³ 1.69881 × 10 ⁴ 2.39657 × 10 ⁴ 1.38142 × 10 ⁶ 3.19004 × 10 ⁴ 2.60728 × 10 ⁴ 1.88376 × 10 ⁴
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴ 1.18180 × 10 ⁵ 4.29301 × 10 ⁴ 2.49406 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	0.0 0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴ 1.36282 × 10 ⁵ 4.94402 × 10 ⁴ 2.87108 × 10 ⁴	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	5.31846 × 10 ² 1.79496 × 10 ³ 6.85509 × 10 ³ 3.05964 × 10 ³ 4.41956 × 10 ³ 4.65961 × 10 ³ 4.41351 × 10 ³ 7.61123 × 10 ³ 1.69881 × 10 ⁴ 2.39657 × 10 ⁴ 1.38142 × 10 ⁶ 3.19004 × 10 ⁴ 2.60728 × 10 ⁴ 1.88376 × 10 ⁴ 1.09003 × 10 ⁴
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴ 1.18180 × 10 ⁵ 4.29301 × 10 ⁴ 2.49406 × 10 ⁴ 8.47843 × 10 ³	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴ 1.36282 × 10 ⁵ 4.94402 × 10 ⁴ 2.87108 × 10 ⁴ 9.75978 × 10 ²	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	5.31846 × 10 ² 1.79496 × 10 ³ 6.85509 × 10 ³ 3.05964 × 10 ³ 4.41956 × 10 ³ 4.65961 × 10 ³ 4.41351 × 10 ³ 7.61123 × 10 ³ 1.69881 × 10 ⁴ 2.39657 × 10 ⁴ 1.38142 × 10 ⁵ 3.19004 × 10 ⁴ 2.60728 × 10 ⁴ 1.88376 × 10 ⁴ 1.09003 × 10 ⁴ 3.71790 × 10 ³
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3 0.044-0.2	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴ 1.18180 × 10 ⁵ 4.29301 × 10 ⁴ 2.49406 × 10 ⁴ 8.47843 × 10 ³ 2.41751 × 10 ²	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3 0.044-0.2	0.0 0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴ 1.36282 × 10 ⁵ 4.94402 × 10 ⁴ 2.87108 × 10 ⁴ 9.75978 × 10 ² 2.78765 × 10 ²	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3 0.044-0.2	5.31846 × 10 ² 1.79496 × 10 ³ 6.85509 × 10 ³ 3.05964 × 10 ³ 4.41956 × 10 ³ 4.65961 × 10 ³ 4.41351 × 10 ³ 7.61123 × 10 ³ 1.69881 × 10 ⁴ 2.39657 × 10 ⁴ 1.38142 × 10 ⁵ 3.19004 × 10 ⁴ 2.60728 × 10 ⁴ 1.88376 × 10 ⁴ 1.09003 × 10 ⁴ 3.71790 × 10 ³ 1.07720 × 10 ²
6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 0.0 6.61826 × 10 ⁵ 4.07030 × 10 ⁴ 4.13170 × 10 ⁴ 4.22317 × 10 ⁴ 4.34864 × 10 ⁴ 6.54145 × 10 ⁴ 2.58578 × 10 ⁴ 5.74746 × 10 ⁴ 6.18518 × 10 ⁴ 3.33408 × 10 ⁴ 1.18180 × 10 ⁵ 4.29301 × 10 ⁴ 2.49406 × 10 ⁴ 8.47843 × 10 ³	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 7.59546 × 10 ⁵ 4.67129 × 10 ⁴ 4.74175 × 10 ⁴ 4.84673 × 10 ⁴ 4.99072 × 10 ⁴ 7.52007 × 10 ⁴ 2.96856 × 10 ⁴ 6.61082 × 10 ⁴ 7.12859 × 10 ⁴ 3.83366 × 10 ⁴ 1.36282 × 10 ⁵ 4.94402 × 10 ⁴ 2.87108 × 10 ⁴ 9.75978 × 10 ²	5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	5.31846×10^{2} 1.79496×10^{3} 6.85509×10^{3} 3.05964×10^{3} 4.41956×10^{3} 4.65961×10^{3} 4.65961×10^{3} 4.6123×10^{3} 1.69881×10^{4} 2.39657×10^{4} 1.38142×10^{5} 3.19004×10^{4} 2.60728×10^{4} 1.88376×10^{4} 1.09003×10^{4} 3.71790×10^{3}

Table 14 (contd)

Gamma source 16	> :	Gamma source 17		Gamma source	
¹⁸ Ο (α, n) ²¹ Ne Time Capsule po	0 yr wer 5679 W(th)	Time	²³⁶ Pu decay and daughter nuclides Time 0 yr Capsule power 5679 W(th)		nd daughter nuclides 1 yr ower 5679 W(th)
Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s—cm²	Energy interval, MeV	Flux, photons/s-cm²
6.0–7.0	0.0	6.0-7.0	0.0	6.0-7.0	0.0
5.0-6.0	0.0	5.0-6.0	0.0	5.0-6.0	0.0
4.0-5.0	0.0	4.0-5.0	0.0	4.0–5.0	0.0
3.0-4.0	0.0	3.0-4.0	0.0	3.0-4.0	0.0
2.0–3.0	1.34323×10^{3}	2.0–3.0	0.0	2.0–3.0	3.65697 × 10 ⁴
1.82.0	6.68884×10^{2}	1.8-2.0	0.0	1.8–2.0	2.40009×10^{3}
1.6-1.8	1.46759×10^{2}	1.6–1.8	0.0	1.6–1.8	2.44198×10^{3}
1.4–1.6	1.49139×10^{2}	1.4–1.6	0.0	1.4–1.6	2.50122×10^{3}
1.2-1.4	2.38528×10^{3}	1.2–1.4	0.0	1.2-1.4	2.57899×10^{3}
1.0-1.2	5.48482×10^{2}	1.0-1.2	0.0	1.0-1.2	3.74472×10^{3}
0.9-1.0	2.69940×10^{2}	0.9–1.0	0.0	0.9-1.0	1.51489×10^{3}
0.80.9	2.60130×10^{2}	0.8-0.9	0.0	0.8-0.9	3.13671×10^{3}
0.7-0.8	2.48878×10^{2}	0.7-0.8	0.0	0.7-0.8	3.34224×10^{3}
0.6-0.7	2.24385×10^{2}	0.6-0.7	3.45107 × 10 ¹	0.6-0.7	1.89773×10^{3}
0.5-0.6	1.97630×10^{2}	0.5-0.6	3.00675 × 10 ¹	0.5-0.6	6.05706×10^{3}
0.4-0.5	1.60224×10^{2}	0.4-0.5	9.50602	0.4-0.5	2.27950×10^{3}
0.3-0.4	2.80338×10^{2}	0.3-0.4	4.90504	0.4-0.5	1.33273×10^{3}
0.2-0.3	5.33532×10^{1}	0.2-0.3	1.54553	0.2-0.3	4.51040×10^{2}
0.044-0.2	1,45190	0.2=0.3	4.94647×10^{-2}	0.044-0.2	1.25653×10^{1}
0.0010.044	2.55817×10^{-6}	0.044=0.2	6.01187 × 10 ⁻⁶		4.62359 × 10 ⁻⁴
				0.001-0.044	
Total	6.93810×10^3	Total	8.05843 × 10 ¹	Total	7.02611 × 10 ⁴
Gamma source 19		Gamma source 20		Gamma source	
	d daughter nuclides		d daughter nuclides		nd daughter nuclides
Time Capsule po	5 yr wer 5679 W(th)	Time Capsule po	10 yr wer 5679 W(th)	Time Capsule p	18 yr power 5679 W(th)
Energy interval, MeV	Flux,	Energy interval,	Flux,	Energy interval, MeV	Flux,
6.0–7.0	photons/s—cm ²	MeV	photons/s-cm²	,,,,,,,	photons/s-cm²
Ų.V/.U			•		† - ·
	0.0	6.0–7.0	0.0	6.0–7.0	0.0
5.0-6.0	0.0	6.0-7.0 5.0-6.0	0.0	6.0–7.0 5.0–6.0	0.0 0.0
5.0 <u>–6</u> .0 4.0–5.0	0.0 0.0 0.0	6.0–7.0 5.0–6.0 4.0–5.0	0.0 0.0 0.0	6.0-7.0 5.0-6.0 4.0-5.0	0.0 0.0 0.0
5.0-6.0 4.0-5.0 3.0-4.0	0.0 0.0 0.0 0.0	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0	0.0 0.0 0.0 0.0	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0	0.0 0.0 0.0 0.0
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0	0.0 0.0 0.0 0.0 0.0 7.61017 × 10 ⁵	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0	0.0 0.0 0.0 0.0 0.0 8.73382 × 10 ⁵
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8	0.0 0.0 0.0 0.0 4.29030 \times 10 ⁵ 2.81575 \times 10 ⁴ 2.86489 \times 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6	0.0 0.0 0.0 0.0 4.29030 \times 10 ⁵ 2.81575 \times 10 ⁴ 2.86489 \times 10 ⁴ 2.93439 \times 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴ 4.47480 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴ 7.08171 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴ 7.08171 × 10 ⁴ 2.66709 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴ 3.89216 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴ 4.47480 × 10 ⁴ 1.44717 × 10 ⁵ 5.44210 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴ 7.08171 × 10 ⁴ 2.66709 × 10 ⁴ 1.55490 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴ 3.89216 × 10 ⁴ 1.25511 × 10 ⁵	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴ 4.47480 × 10 ⁴ 1.44717 × 10 ⁵
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴ 7.08171 × 10 ⁴ 2.66709 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴ 3.89216 × 10 ⁴ 1.25511 × 10 ⁵ 4.72637 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴ 4.47480 × 10 ⁴ 1.44717 × 10 ⁵ 5.44210 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3 0.044-0.2	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴ 7.08171 × 10 ⁴ 2.66709 × 10 ⁴ 1.55490 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	0.0 0.0 0.0 0.0 7.61017 × 10 ⁶ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴ 3.89216 × 10 ⁴ 1.25511 × 10 ⁶ 4.72637 × 10 ⁴ 2.75580 × 10 ⁴	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴ 4.47480 × 10 ⁴ 1.44717 × 10 ⁵ 5.44210 × 10 ⁴ 3.17184 × 10 ⁴
5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 0.0 4.29030 × 10 ⁵ 2.81575 × 10 ⁴ 2.86489 × 10 ⁴ 2.93439 × 10 ⁴ 3.02563 × 10 ⁴ 4.39356 × 10 ⁴ 1.77726 × 10 ⁴ 3.68542 × 10 ⁴ 3.92563 × 10 ⁴ 2.19725 × 10 ⁴ 7.08171 × 10 ⁴ 2.66709 × 10 ⁴ 1.55490 × 10 ⁴ 5.27576 × 10 ³	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 0.0 7.61017 × 10 ⁵ 4.99460 × 10 ⁴ 5.08178 × 10 ⁴ 5.20505 × 10 ⁴ 5.36689 × 10 ⁴ 7.78499 × 10 ⁴ 3.15220 × 10 ⁴ 6.52609 × 10 ⁴ 6.95109 × 10 ⁴ 3.89216 × 10 ⁴ 1.25511 × 10 ⁵ 4.72637 × 10 ⁴ 2.75580 × 10 ⁴ 9.34777 × 10 ³	6.0-7.0 5.0-6.0 4.0-5.0 3.0-4.0 2.0-3.0 1.8-2.0 1.6-1.8 1.4-1.6 1.2-1.4 1.0-1.2 0.9-1.0 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4 0.2-0.3	0.0 0.0 0.0 0.0 8.73382 × 10 ⁵ 5.73205 × 10 ⁴ 5.83211 × 10 ⁴ 5.97359 × 10 ⁴ 6.15932 × 10 ⁴ 8.94849 × 10 ⁴ 3.61877 × 10 ⁴ 7.50557 × 10 ⁴ 8.00953 × 10 ⁴ 4.47480 × 10 ⁴ 1.44717 × 10 ⁵ 5.44210 × 10 ⁴ 3.17184 × 10 ⁴ 1.07587 × 10 ⁴

Table 15. Plutonium dioxide: gamma photon fluxes vs detector position

Gamma source 1: 238Pu + isotopes + decay products Time 0 yr Capsule power 1575 W(th)		Gamma source 2: 18Ο (α, n) ²¹ Ne Time	¹⁸ Ο (α, n) ²¹ Ne		Gamma source 3: 200Pu decay and daughter nuclides Time 0 yr Capsule power 1575 W(th)	
Detector position (r, θ, z)	Flux, photons/s-cm ²	Detector position ^a (r, θ, z)	Flux, photons/s-cm²	Detector position ^a (r, θ, z)	Flux, photons/s—cm ²	
4.519 cm, 0, 0	1.95648 × 10 ⁵	4.519, 0, 0	4.30457 × 10 ⁸	4.519, 0, 0	6.68006 × 10 ¹	
(midplane)	2.10	(midplane)	>/3	(midplane)	7 201 \ \ 101	
5.257,0,0	2.140 × 10 ⁵	5.257, 0, 0	4.705 × 10 ³	5.257, 0, 0	7.301 × 10 ¹	
5.995, 0, 0	1.950 × 10 ⁵	5.995, 0, 0	4.288×10^3	5.995, 0, 0	6.653 × 10 ¹	
40.0, 0, 0	1.184 × 10 ⁴	40.0, 0, 0	2.604 × 10 ²	40.0, 0, 0	4.040	
100.0, 0, 0	2.00 × 10 ³	100.0, 0, 0	4.39 × 10 ¹	100.0, 0, 0	0.681	
0, 0, 17.7	1.870 × 10 ⁵	0, 0, 17.7	4.113 × 10 ³	0, 0, 17.7	6.384 × 10 ¹	
0, 0, 22.7	6.040 × 10 ⁴	0, 0, 22.7	1.328×10^3	0, 0, 22.7	2.061 × 10 ¹	
0, 0, 37.7	7.670×10^3	0, 0, 37.7	1.688×10^{2}	0, 0, 37.7	2.619	
0, 0, 40.0	6.132×10^3	0, 0, 40.0	1.349×10^2	0, 0, 40.0	2.094	
0, 0, 100.0	3.424×10^{2}	0, 0, 100.0	7.533	0, 0, 100.0	0.1170	
Gamma source 4:		Gamma source 5:		Gamma source 6:		
Time	daughter nuclides 1 yr ver 1575 W(th)	Time	daughter nuclides 5 yr /er 1575 W(th)	Time	²³⁶ Pu decay and daughter nuclides Time 10 yr Capsule power 1 575 W(th)	
Detector position ^a	Flux,	Detector position ^a	Flux,	Detector position*	Flux,	
(r, θ, z)	photons/s-cm²	(r, θ, z)	photons/s—cm ²	(r, θ, z)	photons/s—cm²	
4.519, 0, 0 (midplane)	4.33414 × 10 ⁴	4.519, 0, 0 (midplane)	5.07932 × 10 ⁵	4.519, 0, 0 (midplane)	9.00599 × 10 ⁵	
5.257, 0, 0	4.737 × 10 ⁴	5.257, 0, 0	5.552 × 10 ⁵	5.257, 0, 0	9.844 × 10 ⁵	
5.995, 0, 0	4.317 × 10 ⁴	5.995, 0, 0	5.059 × 10 ⁵	5.995, 0, 0	8.970×10^{5}	
40.0, 0, 0	2.622×10^{3}	40.0, 0, 0	3.073 × 10 ⁴	40.0, 0, 0	5.449 × 10 ⁴	
100.0, 0, 0	4.421×10^{2}	100.0, 0, 0	5.181 × 10 ³	100.0, 0, 0	9.186×10^{3}	
0, 0, 17.7	4.142×10^4	0, 0, 17.7	4.8538 × 10 ⁵	0, 0, 17.7	8.606 × 10 ⁵	
0, 0, 22.7	1.338 × 10 ⁴	0, 0, 22.7	1.568 × 10 ⁵	0, 0, 22,7	2.779 × 10 ⁵	
0, 0, 37.7	1.700×10^{3}	0, 0, 37.7	1.991 × 10⁴	0, 0, 37.7	3.531 × 10 ⁴	
0, 0, 40.0	1.358×10^{3}	0, 0, 40.0	1.592 × 10 ⁴	0, 0, 40.0	2.823 × 10 ⁴	
0, 0, 100.0	75.850	0, 0, 100.0	8.89 × 10 ²	0, 0, 100.0	1.576×10^{3}	
		Gamma source 8:		Gamma source 9:		
Gamma source 7: 236Pu decay and daughter nuclides Time 18 yr Capsule power 1575 W(th)		Time 0 yr Capsule power 3468 W(th)		¹⁸ O (α, n) ²¹ Ne Time 0 yr Capsule power 3468 W(th)		
Detector position ^e (r, θ, z)	Flux, photons/s—cm²	Detector position ^α (r, θ, z)	Flux, photons/s-cm²	Detector position ^a (r, θ, z)	Flux, photons/s—cm²	
4.519, 0, 0 (midplane)	1.03491 × 10 ⁶	5.257, 0, 0 (midplane)	2.65066 × 10 ⁵	5.257, 0, 0 (midplane)	6.05676 × 10 ³	
5.257, 0, 0	1.131 × 10 ⁸	5.995, 0, 0	2.823 × 10 ⁵	5.995, 0, 0	6.450×10^{3}	
5.995, 0, 0	1.0308 × 10 ⁶	6.733, 0, 0	2.594 × 10 ⁵	6.733, 0, 0	5.927×10^{3}	
40.0, 0, 0	6.261 × 10 ⁴	40.0, 0, 0	1.856 × 10 ⁴	40.0, 0, 0	4.24×10^2	
100.0, 0, 0	1.056 × 10 ⁴	100.0, 0, 0	3.088 × 10 ³	100.0, 0, 0	7.056×10^{1}	
0, 0, 17.7	9.890 × 10 ⁵	0, 0, 17.7	2.693 × 10 ⁵	0, 0, 17.7	6.154×10^{3}	
0, 0, 22.7	3.194 × 10 ⁵	0, 0, 17.7	8.562 × 10 ⁴	0, 0, 17.7	1.956×10^{3}	
0, 0, 37.7	4.057 × 10 ⁴		1.113 × 10 ⁴	0, 0, 22.7	2.544×10^{2}	
· · ·		0, 0, 37.7			_	
0, 0, 40.0 0, 0, 100.0	3.244×10^4 1.811×10^3	0, 0, 40.0	ļ.	0, 0, 40.0		
	ייאו אין אין אין	0, 0, 100.0	6.55×10^{2}	0, 0, 100.0	1.500×10^{1}	

Table 15 (contd)

Gamma source 10:	:	Gamma source 11:		Gamma source 12:		
²³⁶ Pu decay and daughter nuclides Time 0 yr Capsule power 3468 W(th)		Time	²³⁶ Pu decay and daughter nuclides Time Capsule power 3468 W(th)		²³⁶ Pu decay and daughter nuclides Time 5 yr Capsule power 3468 W(th)	
Detector position ^α (r, θ, z)	Flux, photons/s—cm²	Detector position* (r, θ, z)	Flux, photons/s—cm²	Detector position ^a (r, θ , z)	Flux, photons/s—cm²	
5.257, 0, 0 (midplane)	7.76035 × 10 ¹	5.257, 0, 0 (midplane)	6.10203 × 10 ⁴	5.257, 0, 0 (midplane)	7.15271 × 10 ⁵	
5.995, 0, 0	8.265×10^{1}	5.995, 0, 0	6.500 × 10 ⁴	5.995, 0, 0	7.618 \times 10 ⁵	
6.733, 0, 0	7.595 × 10¹	6.733, 0, 0	5.972 × 10 ⁴	6.733, 0, 0	7.000×10^{5}	
40.0, 0, 0	5.432	40.0, 0, 0	4.272 × 10 ³	40.0, 0, 0	5.007 × 10 ⁴	
100.0, 0, 0	0.904	100.0, 0, 0	7.109×10^{2}	100.0, 0, 0	8.333×10^{3}	
0, 0, 17.7	7.885 × 10 ¹	0, 0, 17.7	6.200 × 10 ⁴	0, 0, 17.7	7.267×10^{5}	
0, 0, 22.7	2.507×10^{1}	0, 0, 22.7	1.971 × 10 ⁴	0, 0, 22.7	2.310×10^{5}	
0, 0, 37.7	3.260	0, 0, 37.7	2.563×10^{3}	0, 0, 37.7	3.004×10^4	
0, 0, 40.0	2.662	0, 0, 40.0	2.093×10^{3}	0, 0, 40.0	2.454 × 10 ⁴	
0, 0, 100.0	0.192	0, 0, 100.0	1.508×10^{2}	0, 0, 100.0	1.767×10^{3}	
Gamma source 13		Gamma source 14:		Gamma source 15:		
Time	daughter nuclides 10 yr ver 3468 W(th)	Time	daughter nuclides 18 yr er 3468 W(th)	Time	²³⁸ Pu + isotopes + decay products Time 0 yr Capsule power 5679 W(th)	
Detector position ^a (r, θ, z)	Flux, photons/s-cm²	Detector position ^a (r, θ, z)	Flux, photons/s-cm²	Detector position* (r, θ, z)	Flux, photons/s—cm²	
5.257, 0, 0 (midplane)	1.26827 × 10 ⁶	5.257, 0, 0 (midplane)	1.45714 × 10 ⁶	5.995, 0, 0 (midplane)	3.04190 × 10 ⁵	
5.995, 0, 0	1.351 × 10 ⁶	5.995, 0, 0	1.552 × 10 ⁶	6.733, 0, 0	3.228×10^{5}	
6.733, 0, 0	1.241 × 10 ⁶	6.733, 0, 0	1.426 × 10 ⁶	7.471, 0, 0	2.982×10^{8}	
40.0, 0, 0	8.878 × 10 ⁴	40.0, 0, 0	1.020 × 10 ⁵	40.0, 0, 0	2.434 × 10 ⁴	
100.0, 0, 0	1.478 × 10 ⁴	100.0, 0, 0	1.698 × 10°	100.0, 0, 0	4.046×10^{3}	
0, 0, 17.7	1.289 × 10 ⁶	0, 0, 17.7	1.481 × 10 ⁶	0, 0, 17.7	3.240×10^{5}	
0, 0, 22.7	4.097 × 10 ⁵	0, 0, 22.7	4.707 × 10 ⁵	0, 0, 22.7	1.106×10^{6}	
0, 0, 37.7	5.327 × 10 ⁴	0, 0, 37.7	6.120 × 10 ⁴	0, 0, 37.7	1.552 × 10 ⁴	
0,0,37.7		1	. 1			
0, 0, 40.0	4.350 × 10 ⁴	0, 0, 40.0	5.000 × 10 ⁴	0, 0, 40.0	1.275×10^4	

Table 15 (contd)

Gamma source 16:		Gamma source 17:		Gamma source 18:	
¹⁸ Ο (α, n) ²¹ Ne Time 0 yr Capsule power 5679 W(th)		²³⁶ Pu decay and daughter nuclides Time 0 yr Capsule power 5679 W(th)		²³⁶ Pu decay and daughter nuclides Time 1 yr Capsule power 5679 W(th)	
Detector position ^a (r, θ, z)	Flux, photons/s—cm²	Detector position ^a (r, θ, z)	Flux, photons/s—cm²	Detector position ^a (r, θ, z)	Flux, photons/s—cm²
5.995, 0, 0	6.93810 × 10 ³	5.995, 0, 0	8.05843 × 10 ¹	5.995, 0, 0	7.02611 × 10 ⁴
(midplane)		(midplane)		(midplane)	
6.733, 0, 0	7.361×10^{3}	6.733, 0, 0	8.550 × 10 ¹	6.733, 0, 0	7.455×10^4
7.471, 0, 0	6.800×10^{3}	7.471, 0, 0	7.900 × 10 ¹	7.471, 0, 0	6.886 × 10 ⁴
40.0, 0, 0	5.550 × 10 ²	40.0, 0, 0	6.4471	40.0, 0, 0	5.621×10^{3}
100.0, 0, 0	9.228 × 10 ¹	100.0, 0, 0	1.072	100.0, 0, 0	9.345×10^{2}
0, 0, 17.7	7.389×10^{3}	0, 0, 17.7	8.582 × 10 ¹	0, 0, 17.7	7.483×10^4
0, 0, 22.7	2.521×10^{3}	0, 0, 22.7	2.929 × 10 ¹	0, 0, 22.7	2.554×10^4
0, 0, 37.7	3.539×10^{2}	0, 0, 37.7	4.110	0, 0, 37.7	3.583×10^{3}
0, 0, 40.0	2.907×10^{2}	0, 0, 40.0	3.377	0, 0, 40.0	2.944×10^{3}
0, 0, 100.0	2.428×10^{1}	0, 0, 100.0	0.282	0, 0, 100.0	2.459×10^{2}
Gamma source 19	:	Gamma source 20:		Gamma source 21:	
Time	daughter nuclides 5 yr ver 5679 W(th)	²³⁰ Pu decay and daughter nuclides Time 10 yr Capsule power 5679 W(th)		²³⁶ Pu decay and daughter nuclides Time 18 yr Capsule power 5679 W(th)	
Detector position ^a (r, θ, z)	Flux, photons/s—cm²	Detector position ^a (r, θ, z)	Flux, photons/s—cm²	Detector position ^a (r, θ, z)	Flux, photons/s—cm²
5.995, 0, 0 (midplane)	8.23668 × 10 ³	5.995, 0, 0 (midplane)	1.46051 × 10 ⁶	5.995, 0, 0 (midplane)	1.67785 × 10 ⁶
6.733, 0, 0	8.739 × 10 ⁵	6.733, 0, 0	1.550 × 10 ⁶	6.733, 0, 0	1.780×10^6
7.471, 0, 0	8.073 × 10 ⁶	7.471, 0, 0	1.432 × 10 ⁶	7.471, 0, 0	1.645×10^{6}
40.0, 0, 0	6.590 × 10 ⁴	40.0, 0, 0	1.169 × 10 ⁵	40.0, 0, 0	1.343×10^{5}
100.0, 0, 0	1.096 × 10°	100.0, 0, 0	1.943 × 10 ⁴	100.0, 0, 0	2.232×10^4
0, 0, 17.7	8.772 × 10 ³	0, 0, 17.7	1.556 × 10 ⁶	0, 0, 17.7	1.787×10^{6}
0, 0, 22.7	2.993 × 10 ⁵	0, 0, 22.7	5.308 × 10 ⁵	0, 0, 22.7	6.097 × 10 ⁵
0, 0, 37.7	4.201 × 10 ⁴	0, 0, 37.7	7.449 × 10 ⁴	0, 0, 37.7	8.557 × 10 ⁴
0, 0, 40.0	3.451 × 10 ⁴	0, 0, 40.0	6.120 × 10 ⁴	0, 0, 40.0	7.030 × 10 ⁴

One can determine the spectrum at some arbitrary (radial midplane only) detector position by multiplying the emitted spectrum values at the capsule surface by the ratio of the total flux at that detector position to the total flux at the capsule surface.

D. Summary

For this study, all calculations were completed with the following assumptions or conditions:

- (1) The radioactive half-life of 238 Pu is 87.4 yr with a fission yield of 2.75 ± 0.01 neutrons/fission.
- (2) The radioactive half-life of 241Pu is 14 yr.
- (3) In Table 2, the gamma ray abundances of each isotopic decay correspond to the values given in Ref. 7.

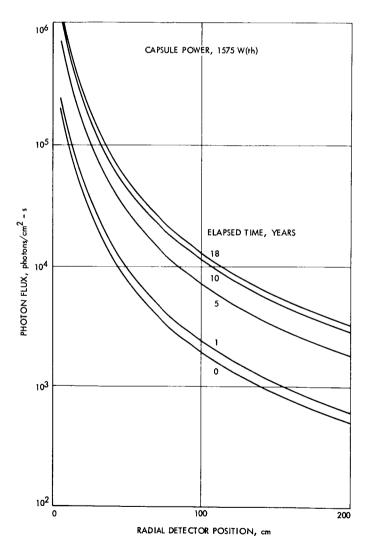


Fig. 3. Photon flux vs radial detector position, capsule power 1575 W(th)

- Additional resonant gammas not given in Ref. 7 were taken from Refs. 11 and 1.
- (4) The gamma rays emitted by prompt fission and equilibrium fission products were integrated in the given energy interval $\int N(E) dE$ to yield the total number of gammas produced per neutron fission.
- (5) In Table 4, the gamma ray abundances were taken from Ref. 7. The methods of analysis for the direct yield of ²³⁶Pu are given in Appendixes B and C.
- (6) Although Refs. 18 and 19 suggest the 1.75 and 2.87 MeV photons obtained from the 18 O (α, n) 21 Ne reaction, it is felt that, because a NaI crystal was used in their experiment, the 1.90, 2.40, and 2.70 MeV photons given in Ref. 1 were contained as unresolved resonances in experiments of Refs. 18 and 19.

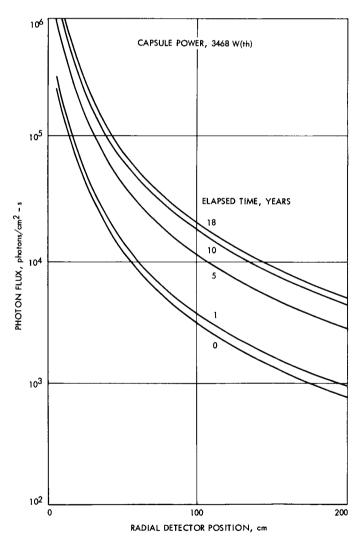


Fig. 4. Photon flux vs radial detector position, capsule power 3468 W(th)

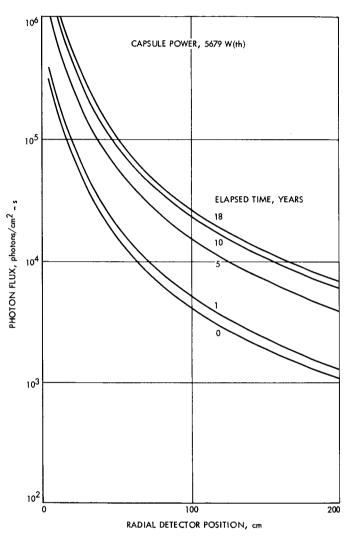


Fig. 5. Photon flux vs radial detector position, capsule power 5679 W(th)

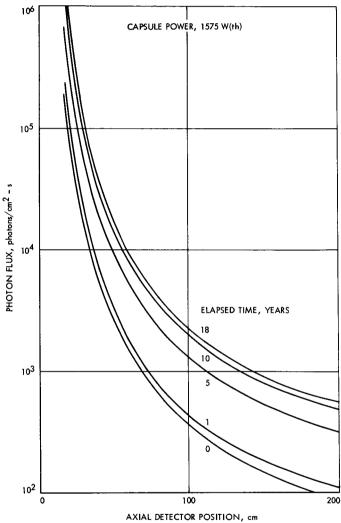


Fig. 6. Photon flux vs axial detector position, capsule power 1575 W(th)

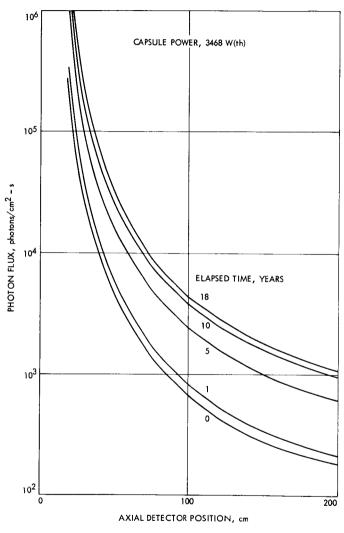


Fig. 7. Photon flux vs axial detector position, capsule power 3468 W(th)

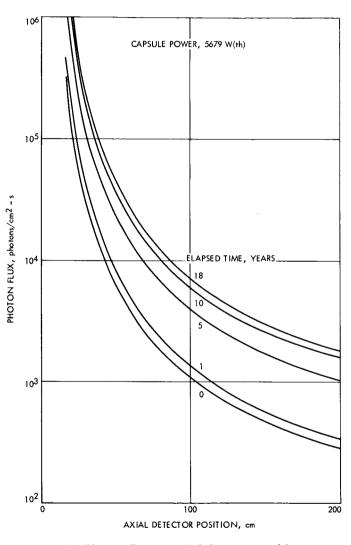


Fig. 8. Photon flux vs axial detector position, capsule power 5679 W(th)

Appendix A

Gamma Activity From Direct Decay of 241Pu and Daughter Nuclides

The following demonstrates how the photon yield per gram of PuO_2 was determined for the case of the 145 KeV resonant gamma line. Other lines were done in a similar manner.

The decay of the daughter nuclide ²⁴¹Am will produce a gamma spectrum which is calculated from the following abundances (see Table 2):

$Photons/s-g PuO_2 =$
activity of pure isotope $\times 0.008 \times 0.881 \times$ abundance

where abundance is given in Table 2, the activity of pure isotope $=3.92\times10^{12}\,\rm dis^*/s$ –g ^{241}Pu (Table 1),

$$0.008$$
 is the fraction $\left(\frac{g^{241}Pu}{gPu}\right)$,

and

$$0.881$$
 is the fraction $\left(\frac{g\,Pu}{g\,PuO_2}\right)$.

Thus the number of 145 KeV photons/s-g PuO₂ =

The gamma emission from the decay products of ²⁴¹Pu was determined as follows:

$$\begin{array}{c} \xrightarrow{241} Pu \xrightarrow{\beta} \xrightarrow{241} Am \xrightarrow{\alpha} \xrightarrow{432 \text{ yr}} \xrightarrow{237} Np \xrightarrow{\beta} \xrightarrow{2.14 \times 10^6 \text{ yr}} \\ & \text{decay chain 1} \\ \text{(approximately 100% yield)}, \end{array}$$

and

Gamma energy, KeV	Abundance, % of isotope decay	
60	36.0	
101	$4 imes10^{-2}$	
208	$6 imes10^{ ext{-4}}$	
335	$8 imes 10^{-4}$	
370	$4 imes10^{-4}$	
663	$5 imes10^{-4}$	
772	$3 imes10^{-4}$	

The net gamma activity of ²⁴¹Am was calculated with the Bateman equation where the decay chain is represented as

$$N_A \xrightarrow{\lambda_A} N_B \xrightarrow{\lambda_B} N_C \xrightarrow{\lambda_C}$$
,

where N_A is the number of parent atoms with decay constant λ_A , N_B is the number of atoms of the first daughter nuclide with decay constant λ_B , and N_C is the number of atoms of the second daughter nuclide with decay constant λ_C .

The activity (dis/s) of 241 Am represented by $N_B \lambda_B$ is written as

$$N_B \lambda_B = rac{\lambda_A \lambda_B}{\lambda_B - \lambda_A} \{e^{-\lambda_A t} - e^{-\lambda_B t}\} N_{A0},$$

where N_{A0} is the initial supply of the parent atoms N_A and is equal to $(g^{241}Pu \times N_0)/A$. The symbol N_0 is the Avogadro number, and A is the gram atomic mass of the nuclide N_A . If activity (dis/s-g ²⁴¹Pu) is desired, then $N_{A0} = N_0/A$ is used.

^{*}Disintegration.

The decay constants λ_A , λ_B corresponding to the parent and daughter nuclides were calculated as

$$\begin{split} \lambda_{A}\,(^{241}\text{Pu}) &= \frac{0.693}{\text{half-life}\,(\text{Table 1})} = \frac{0.693}{14\,\text{yr}}\,,\\ &= 0.0495\,\text{yr}^{-1},\\ &= 1.567\times 10^{-9}\,\text{s}^{-1},\\ \lambda_{B}\,(^{241}\text{Am}) &= 0.001604\,\text{yr}^{-1}. \end{split}$$

The activity of the gamma emitted by the decay of 241Am is

$$\frac{dis \, (number \, of \, photons)}{s-g \, PuO_2} =$$

$$\left(\!\frac{\mathrm{g}^{\,{}^{241}\mathrm{Pu}}}{\mathrm{g}\,\mathrm{PuO}_2}\!\right)\!\times\!\left(\!\frac{N_{\mathrm{o}}}{A}\!\right)\!\left(e^{\text{-}\lambda_A t}-e^{\lambda_B t}\right)\!\times\mathrm{abundance}.$$

The photons emitted from the decay of ²³⁷Np in each decay chain were neglected because of the long half-life and low photon abundances.

The photon activity of 237U is defined as

photons/s-g
$$PuO_2 =$$

$$rac{\lambda_A N_0}{A} \, e^{-\lambda_A t} igg(rac{g^{\,241} \mathrm{Pu}}{g \, \mathrm{PuO_2}} igg) imes ext{abundance} imes ext{yield.}$$

All symbols have been previously defined.

The photon energy and abundances of ²³⁷U were taken from Table 2;

Gamma energy, KeV	Abundance, % of isotope decay	
14.0	41.0	
32.2	16.0	
60.0	36.0	
208.0	23.0	

and the decay factor $e^{-\lambda_A t}$ is

Time, yr	Decay factor $e^{-\lambda_A t}$	
0	1.0	
1	0.952	
5	0.781	
10	0.610	
18	0.410	

The resultant activities for ²⁴¹Pu and daughter nuclides are presented in Table 6.

Appendix B

Gamma Activity From ²³⁶Pu Decay

With the contamination of ²³⁶Pu assumed as 1.2 parts/ 10⁶, the gamma emission rate of the ²³⁶Pu primary decay gammas becomes (from Table 4)

Gamma energy, KeV	Abundance, % of isotope decay	Photons/ s-g ²³⁶ Pu	Photons/ s-g PuO ₂
48	$3.1 imes 10^{-2}$	$6.107 imes 10^{9}$	6.46×10^{3}
110	$1.2 imes 10^{-2}$	$2.364 imes10^{9}$	$2.50 imes10^{3}$
165	$6.6 imes10^{-4}$	$13.0 imes10^{7}$	13.75
520	$1.7 imes10^{-4}$	$3.35 imes10^{7}$	3.54
570	$1.0 imes10^{-4}$	$1.97 imes 10^{7}$	2.08
645	$2.4 imes10^{-4}$	$4.728 imes 10^7$	5.00

where

$$activity \left(\frac{dis}{s-g^{\,236}Pu} \right) =$$

activity of pure isotope $\times e^{-\lambda t} \times$ abundance

$$=1.97 imes10^{13}rac{ ext{dis}}{ ext{s-g}} imes e^{-\lambda t} imes ext{abundance},$$

and

$$activity \left(\frac{dis}{s - g \; PuO_2} \right) =$$

$$\text{activity}\left(\frac{\text{dis}}{\text{s-g}^{\,236}\text{Pu}}\right)\times\left(\frac{\text{g}^{\,236}\text{Pu}}{\text{g}\,\text{PuO}_2}\right)=\text{activity}\times1.2\times10^{\text{-6}}.$$

The decay factor $e^{-\lambda t}$ was taken to be the following:

Time	Decay factor $e^{-\lambda t}$	
0	1.0	
1	0.784	
5	0.296	
10	0.087	
18	0.013	

where

$$\lambda = \frac{0.693}{half\text{-life}\,^{236}Pu} = \frac{0.693}{2.85} \; .$$

Appendix C

Gamma Activity From Decay of 236Pu Daughter Nuclides

Radioactive ²³⁶Pu will decay into a large number of radioactive daughter nuclides which decay and emit photons. The only daughter nuclides considered in this study were ²¹²Pb, ²¹²Bi, and ²⁰⁸Tl. Study of all other intermediate daughter nuclide activity was neglected because of the low photon abundance accompanying their decay.

The decay of the parent atom, ²³⁶Pu, into its daughter nuclides was calculated from the Bateman equation and the following sequence of decay:

$$\overset{\text{236}}{\text{Pu}} \xrightarrow{\alpha} \overset{\alpha}{\underset{2.85 \text{ yr}}{\longrightarrow}} \overset{\text{232}}{\text{U}} \xrightarrow{\alpha} \overset{\alpha}{\underset{72 \text{ yr}}{\longrightarrow}} \overset{\text{228}}{\text{Th}} \xrightarrow{\alpha} \overset{\alpha}{\underset{1.91 \text{ yr}}{\longrightarrow}}$$

224
Ra $\xrightarrow{\alpha} ^{3.64 \text{ day}} ^{220}$ Rn $\xrightarrow{\alpha} ^{216}$ Po $\xrightarrow{\alpha} ^{0.16 \text{ s}}$

$$\frac{\beta}{10.6 \text{ hr}} \xrightarrow{^{212}\text{Bi}} \frac{\alpha (36\%)}{60 \text{ min}} \xrightarrow{^{208}\text{Tl}} 60 \text{ min} \qquad \beta (64\%) 3 \text{ min} \qquad \beta$$

$$\frac{\beta}{10.6 \text{ min}} \xrightarrow{^{212}\text{Po}} \frac{\alpha}{10.3 \text{ ms}} \xrightarrow{^{208}\text{Pb}} \frac{\alpha}{10.3 \text{ ms}} \xrightarrow{^{208}\text{Pb}} \frac{\alpha}{10.3 \text{ ms}} = \frac{\alpha}{10.3 \text{ ms}} \xrightarrow{^{208}\text{Pb}} \frac{\alpha}{10.3 \text{ ms}} =$$

The photon activity of ²⁰⁸Tl is the photon activity of ²¹²Bi multiplied by the 36% yield factor. The photon activity of ²¹²Bi is the same as ²¹²Pb which, in turn, has the same activity of ²²⁸Th. It becomes evident that the photon activity accompanying the radioactive decay of ²¹²Pb, ²¹²Bi, and ²⁰⁸Tl is controlled by the growth of ²²⁸Th, which has a half-life of 1.91 yr.

The decay chain relevant to this study, which corresponds to the growth of ²²⁸Th, is due to

236
Pu $\frac{\alpha}{2.85 \text{ yr}}$ $\stackrel{^{232}}{\text{U}}$ $\frac{\alpha}{72 \text{ yr}}$ $\stackrel{^{228}}{\text{Th}}$ $\frac{\alpha}{1.91 \text{ yr}}$,

and is represented as

$$N_A \xrightarrow{\lambda_A} N_B \xrightarrow{\lambda_B} N_C \xrightarrow{\lambda_C}$$
,

where N_A is the number of parent atoms with decay constant λ_A , N_B is the number of the daughter nuclides with decay constant λ_B , and N_C is the number of daughter nuclides with decay constant λ_C .

The number of photons emitted by the daughter nuclide N_{σ} (212Bi, 212Pb, or 208Tl) is written as

photons/s-g ²³⁶Pu =

$$\lambda_{\scriptscriptstyle C} \, N_{\scriptscriptstyle A^{\scriptscriptstyle O}} \, \Big\{ \! rac{\lambda_{\scriptscriptstyle A} \lambda_{\scriptscriptstyle B} \, e^{-\lambda_{\scriptscriptstyle A} t}}{(\lambda_{\scriptscriptstyle B} - \lambda_{\scriptscriptstyle A}) \, (\lambda_{\scriptscriptstyle C} - \lambda_{\scriptscriptstyle A})} + rac{\lambda_{\scriptscriptstyle A} \lambda_{\scriptscriptstyle B} \, e^{-\lambda_{\scriptscriptstyle B} t}}{(\lambda_{\scriptscriptstyle A} - \lambda_{\scriptscriptstyle B}) \, (\lambda_{\scriptscriptstyle C} - \lambda_{\scriptscriptstyle B})}$$

$$+ \frac{\lambda_A \lambda_B e^{-\lambda_C t}}{(\lambda_A - \lambda_C)(\lambda_B - \lambda_C)} \times \text{yield} \times \text{abundance},$$

where N_{A0} is the initial supply of ²³⁶Pu atoms written here as N_0/A with N_0 being an Avogadro number and A the gram-atomic mass of ²³⁶Pu. The photon abundances and yield factors were taken from Table 4. The photon activity per gram of PuO₂ was determined as

photons/s-g
$$PuO_2$$
 = photons/s-g ^{236}Pu
 \times concentration of ^{236}Pu in PuO_2 .

The decay constants were calculated to be (see Table 1)

$$\lambda_{A}^{236} Pu = \frac{0.693}{half\text{-life}} = \frac{0.693}{2.85 \text{ yr}} = 0.24316 \text{ yr}^{-1},$$

$$\lambda_R^{232}U = 0.009365 \,\mathrm{yr}^{-1}$$

and

 λ_C^{228} Th = 0.36474 yr⁻¹.

The activity of 228 Th for the various elapsed time periods were obtained as follows:

Time, yr	dis/s-g ²³⁶ Pu
1	$2.742 imes 10^{10}$
5	$3.222 imes 10^{11}$
10	$5.696 imes 10^{11}$
18	$6.560 imes 10^{11}$

When applied to PuO_2 fuel in which the concentration of ^{236}Pu may vary, the activity of the ^{228}Th per gm of PuO_2 becomes

Concentration/ time, part/10 ⁶	1 yr	5 yr	10 yr	18 yr
1.2	$2.8815 imes 10^{4}$	$3.383 imes10^{5}$	$5.981 imes10^{5}$	$6.891 imes 10^{5}$
0.8	$1.921 imes 10^4$	$2.256 imes10^{ imes}$	$3.987 imes10^{ imes}$	$4.594 imes 10^{5}$
0.6	1.441×10^{4}	$1.692 imes10^{5}$	$2.990 imes10^{ imes}$	$3.445 imes 10^{5}$
0.1	$0.240 imes10^{4}$	$2.819 imes10^4$	$4.984 imes10^4$	$5.742 imes10^4$

Appendix D

Gamma Activity Accompanying ¹⁸O (α, n) ²¹Ne Reaction

Alpha particles incident upon the isotope ¹⁸O will produce ²¹Ne in various excited states as well as in the ground state. The immediate decay of the ²¹Ne excited states will produce photons with energy equal to the difference in energy between the excited state and the ground state.

It was assumed that alpha particles (72% at 5.49 MeV and 28% at 5.45 MeV) in the PuO₂ product fuel were derived from the decay of ²³⁸Pu, which has a total neutron emission rate (Ref. 19) of

$$1.90 \times 10^4 \, \text{n/s-g}^{238} \text{Pu}$$

where 1.24×10^4 n/s-g ²³⁸Pu is from the ¹⁸O (α , n) ²¹Ne reaction, 0.265×10^4 n/s-g ²³⁸Pu is from spontaneous neutron fission, and 0.40×10^4 n/s-g ²³⁸Pu is from the (α , n) reaction with impurities (Ref. 19).

The number of photons emitted per second–gram of PuO_2 was calculated as 1.24×10^4 n/s–g $^{238}Pu \times (0.714) \times$ photons emitted/neutron emission.

The value 0.714 =
$$\left(\frac{g^{238}Pu}{g\,PuO_2}\right)$$
,

and the photon emission rate per neutron emitted is taken from the above table. Each of the photon emission rates must be corrected for the decrease in ²³⁸Pu activity by the factor $e^{-0.007929t}$. The rates then become the following:

Time, yr	Decay factor $e^{-\lambda t}$
0	1.000
1	0.992
5	0.961
10	0.924
18	0.867

The photon emission rate produced by the ¹⁸O (α, n) ²¹Ne reaction became as follows:

Gamma ray energy, MeV	Photons emitted/ neutron emission (Ref. 1)	Photons emitted/ s-g PuO ₂
0.35	0.45	0.4 × 10 ⁴
1.38	0.10	$0.089 imes 10^4$
1.90	0.02	$0.018 imes 10^4$
2.40	0.02	$0.018 imes 10^4$
2.70	0.02	$0.018 imes 10^4$

Appendix E Activity From Fission Gammas

The emission per energy interval of prompt fission gammas and equilibrium fission product gammas are tabulated below. These values were determined from the data given on the following page.

energy interval, spectrum N (E	Total fission gamma	Photons/s-g PuO ₂		
	$\begin{array}{c} \text{spectrum } N(E) \Delta E & -\\ \text{per fission} \end{array}$	1575 W(th)a	3468 W(th)b	5769 W(th)°
6.0-7.0	0.007	5.0	10.0	15.1
5.0-6.0	0.020	14.0	28.2	43.0
4.0-5.0	0.063	45.0	88.8	$1.355 imes10^{2}$
3.0-4.0	0.207	147.0	291.9	$4.451 imes 10^{2}$
2.0-3.0	0.815	$5.787 imes10^{2}$	$11.492 imes 10^{2}$	$1.752 imes10^{3}$
1.8-2.0	0.371	$2.634 imes10^{2}$	$5.231 imes10^{2}$	$7.977 imes 10^{2}$
1.6-1.8	0.559	$3.969 imes 10^{2}$	$7.882 imes10^{2}$	$1.202 imes10^{3}$
1.4-1.6	0.575	$4.083 imes10^{2}$	$8.108 imes 10^{2}$	$1.236 imes10^{3}$
1.2-1.4	0.501	$3.557 imes 10^{2}$	$7.064 imes10^{2}$	$1.077 imes 10^{\scriptscriptstyle 3}$
1.0-1.2	0.584	$4.147 imes 10^{2}$	$8.234 imes10^{2}$	$1.256 imes10^{3}$
0.9-1.0	0.609	$4.324 imes10^{2}$	$8.587 imes 10^{2}$	$1.309 imes 10^{3}$
0.8-0.9	1.268	$9.003 imes10^{2}$	$17.879 imes 10^{2}$	$2.726 imes10^{3}$
0.7-0.8	1.470	$10.044 imes 10^{2}$	$20.727 imes 10^{2}$	$3.161 imes 10^{3}$
0.6-0.7	1.679	$11.921 imes 10^{2}$	$23.674 imes10^{2}$	$3.610 imes 10^{3}$
0.5-0.6	1.758	$12.482 imes 10^{2}$	$24.788 imes10^{2}$	$3.780 imes10^{ ext{3}}$
0.4-0.5	1.859	$13.200 imes 10^{2}$	$26.212 imes 10^{2}$	$3.997 imes 10^{\scriptscriptstyle 3}$
0.3-0.4	1.954	$13.874 imes10^{2}$	$27.552 imes 10^{2}$	$4.202 imes10^{3}$
0.2-0.3	0.538	$3.820 imes10^{2}$	$7.586 imes10^{2}$	$1.157 imes 10^{3}$
0.044-0.2	0.323	$2.294 imes10^{2}$	$4.554 imes10^{2}$	$0.695 imes10^{\scriptscriptstyle 3}$
0.001-0.044	0.0	0.0	0.0	0.0

For the 1575 W(th) capsule, the calculated fission rate was 0.71×10^3 n/s-g PuO₂; the fission rate used for the 3468 W(th) was 1.41×10^3 n/s-g PuO₂; and for the 5769 W(th) the fission rate became 2.15×10^3 n/s-g PuO₂.

The total fission gamma spectrum was determined from the following data, and is based on the data of Table 3.

Gamma ray energy interval, MeV	Prompt fission gamma spectrum $N\left(E\right) \Delta E$ per fission	Equilibrium fission product gamma spectrum $N(E) \Delta E$ per fission	Total fission gamma spectrum $N(E) \Delta E$ per fission
6.0-7.0	0.007	0.0	0.007
5.0-6.0	0.020	0.0	0.020
4.0-5.0	0.060	0.003	0.063
3.0-4.0	0.179	0.027	0.207
2.0-3.0	0.538	0.267	0.815
1.8-2.0	0.198	0.173	0.371
1.6-1.8	0.247	0.312	0.559
1.4-1.6	0.308	0.267	0.575
1.2–1.4	0.384	0.117	0.501
1.0-1.2	0.478	0.106	0.584
0.9-1.0	0.302	0.307	0.609
0.8-0.9	0.380	0.888	1.268
0.7-0.8	0.479	0.9910	1.470
0.6-0.7	0.602	1.077	1.679
0.5-0.6	0.758	1.000	1.758
0.4-0.5	0.954	0.905	1.859
0.3-0.4	1.201	0.753	1.954
0.2-0.3	0.0	0.538	0.538
0.044-0.2	0.0	0.323	0.323
0.001-0.044	0.0	0.0	0.0

References

- Stoddard, D. H., Albenesius, E. L., Radiation Properties of ²³⁸Pu Produced for Isotopic Power Generators, Report DP-984. E. I. DuPont de Nemours & Co., Savannah River Laboratory, Aiken, S.C., July 1965.
- Plutonium-238 and Polonium-210 Data Sheets, Report MLM-1441. Monsanto Research Corporation, Mound Laboratories, Miamisburg, Ohio, September 1967.
- 3. Matlack, G. M., Metz, C. F., Radiation Characteristics of Plutonium 238, Report LA-3696. Los Alamos (N.M.) Scientific Laboratory, Oct. 11, 1967.
- Tsenter, E. M., Khabakhpashev, A. G., and Pirkin, J. A., "Gamma rays from Po-O¹⁸ Neutron Source," Sov. Phys.-JETP, Vol. 10, No. 4, pp. 806-807, April 1960 (English translation).
- Druin, V. A., Perelygin, V. P., and Khlebnikov, G. I., "Spontaneous Fission Periods of Np²³⁷, Pu²³⁸, and Pu²⁴²," Sov. Phys.—JETP, Vol. 13, No. 5, pp. 913–914, November 1961 (English translation).
- 6. Prince, A., "Estimated Fission Properties of Transradium Isotopes," paper 680307-18, presented at the 2nd Neutron Cross Sections and Technology Conference, Washington, D.C., Mar. 4-7, 1968.
- 7. Lederer, C. M., Hollander, J. M., Perlman, I., Table of Isotopes, Sixth Edition. John Wiley & Sons, Inc., New York, 1967.
- 8. Terrell, J., "Distributions of Fission Neutron Numbers," *Phys. Rev.*, Vol. 108, No. 3, pp. 783-789, 1957.
- Asplund-Nilsson, I., Conde, H., and Starfelt, N., "Average Number of Prompt Neutrons Emitted in the Spontaneous Fission of U²³⁸ and Ph²⁴⁰," Nucl. Sci. Eng., Vol. 15, pp. 213–216, 1963.
- Serdinkova, I. A., Khabakhpashev, A. G., and Tsenter, E. M., "Investigation of the (α, n) Reaction on Oxygen," *Izvest. Akad. Nauk SSSR*, Ser. Fiz 21, p. 1018, 1957.
- 11. Bubernak, J., Matlack, G. M., Metz, C. F., "Neutrons and Gamma Radiations from Pu-238," paper presented at the American Nuclear Society International Conference on the Constructive Uses of Atomic Energy, Washington, D.C., Nov. 10-15, 1968. Summary available in American Nuclear Society Transactions, Vol. 11, p. 457, 1968.
- 12. Reactor Physics Constants, USAEC Report ANL-5800, Argonne National Laboratory, Lemont, Ill., 1958.
- 13. Lathrop, K. D., GAMLEG-A Fortran Code To Produce Multigroup Cross Sections for Photon Transport Calculations, Report LA-3267. Los Alamos (N.M.) Scientific Laboratory, Apr. 23, 1965.
- 14. Code package CCC-82. Radiation Shielding Information Center (RSIC), Oak Ridge (Tenn.) National Laboratory.
- Code package CCC-42. Radiation Shielding Information Center (RSIC), Oak Ridge (Tenn.) National Laboratory.

References (contd)

- Malenfant, R. E., QAD-A Series of Point Kernel General Purpose Shielding Programs, Report LA-3573. Los Alamos (N.M.) Scientific Laboratory, October 1966.
- 17. Herold, T. R., "Neutron Spectrum of ²³⁸PuO₂," Nucl. Appl., Vol. 4, No. 1, pp. 19–22, January 1968.
- 18. Pronko, J. G., Olsen, W. C., and Sample, J. T., "Levels in ²¹Ne Using $^{18}O(\alpha, n)$ ²¹Ne Reaction," *Nucl. Phys.*, Vol. 83, pp. 321–331, 1966.
- 19. Pronko, J. G., Rolfs, C., Maier, H. J., "The 2.791 and 2.87 MeV States in ²¹Ne," *Nucl. Phys.*, Vol. A94, pp. 561–579, 1967.