1,598 research outputs found

    A fundamental plane of black hole activity

    Full text link
    We examine the disc--jet connection in stellar mass and supermassive black holes by investigating the properties of their compact emission in the X-ray and radio bands. We compile a sample of ~100 active galactic nuclei with measured mass, 5 GHz core emission, and 2-10 keV luminosity, together with 8 galactic black holes with a total of ~50 simultaneous observations in the radio and X-ray bands. Using this sample, we study the correlations between the radio (L_{R}) and the X-ray (L_{X}) luminosity and the black hole mass (M). We find that the radio luminosity is correlated with {\em both} M and L_{X}, at a highly significant level. In particular, we show that the sources define a ``fundamental plane'' in the three-dimensional (log L_{R},log L_{X},log M) space, given by log L_{R}=(0.60^{+0.11}_{-0.11}) log L_{X} +(0.78^{+0.11}_{-0.09}) log M + 7.33^{+4.05}_{-4.07}, with a substantial scatter of \sigma_{R}=0.88. We compare our results to the theoretical relations between radio flux, black hole mass, and accretion rate derived by Heinz and Sunyaev (2003). Such relations depend only on the assumed accretion model and on the observed radio spectral index. Therefore, we are able to show that the X-ray emission from black holes accreting at less than a few per cent of the Eddington rate is unlikely to be produced by radiatively efficient accretion, and is marginally consistent with optically thin synchrotron emission from the jet. On the other hand, models for radiatively inefficient accretion flows seem to agree well with the data.Comment: 21 pages, 8 figures (2 in colour). Revised version accepted for publication by MNRAS. Improved and extended discussio

    The X-ray reflector in NGC 4945: a time and space resolved portrait

    Get PDF
    We present a time, spectral and imaging analysis of the X-ray reflector in NGC 4945, which reveals its geometrical and physical structure with unprecedented detail. NGC 4945 hosts one of the brightest AGN in the sky above 10 keV, but it is only visible through its reflected/scattered emission below 10 keV, due to absorption by a column density of ~4\times10^24 cm-2. A new Suzaku campaign of 5 observations spanning ~6 months, together with past XMM-Newton and Chandra observations, show a remarkable constancy (within <10%) of the reflected component. Instead, Swift-BAT reveals strong intrinsic variability on time scales longer than one year. Modeling the circumnuclear gas as a thin cylinder with the axis on the plane of the sky, we show that the reflector is at a distance >30-50 pc, well within the imaging capabilities of Chandra at the distance of NGC 4945 (1"~18 pc). Accordingly, the Chandra imaging reveals a resolved, flattened, ~150 pc-long clumpy structure, whose spectrum is fully due to cold reflection of the primary AGN emission. The clumpiness may explain the small covering factor derived from the spectral and variability properties.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in MNRA

    An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data

    Full text link
    We present a method enabling the creation of constant-uncertainty/constant-significance light curves with the data of the Fermi-Large Area Telescope (LAT). The adaptive-binning method enables more information to be encapsulated within the light curve than with the fixed-binning method. Although primarily developed for blazar studies, it can be applied to any sources. This method allows the starting and ending times of each interval to be calculated in a simple and quick way during a first step. The reported mean flux and spectral index (assuming the spectrum is a power-law distribution) in the interval are calculated via the standard LAT analysis during a second step. The absence of major caveats associated with this method has been established by means of Monte-Carlo simulations. We present the performance of this method in determining duty cycles as well as power-density spectra relative to the traditional fixed-binning method.Comment: 17 pages, 13 figures, 5 tables. Submitted to A&

    Ionized Absorbers in AGN: the Role of Collisional Ionization and Time-Evolving Photoionization

    Full text link
    In this paper we explore collisional ionization and time-evolving photoionization in the, X-ray discovered, ionized absorbers in Seyfert galaxies. These absorbers show temporal changes inconsistent with simple equilibrium models. We develop a simple code to follow the temporal evolution of non-equilibrium photoionized gas. As a result several effects appear that are easily observable; and which, in fact, may explain otherwise paradoxical behavior. Specifically we find that: 1) In many important astrophysical conditions pure collisional and photoionization equilibria can be distinguished with moderate spectral resolution observations, due to a strong absorption structure between 1 and 3 keV. 2) In time-evolving non-equilibrium photoionization models the response of the ionization state of the gas to sudden changes of the ionizing continuum is smoothed and delayed at low gas densities, even when the luminosity increases. 3) If the changes of the ionizing luminosity are not instantaneous, and the electron density is low enough (the limit depends on the average ionization state of the gas), the ionization state of the gas can continue to increase while the source luminosity decreases, so a maximum in the ionization state of a given element may occur during a minimum of the ionizing intensity (the opposite of the prediction of equilibrium models). 4) Different ions of different elements reach their equilibrium configuration on different time-scales. These properties are similar to those seen in several ionized absorbers in AGN, properties which had hitherto been puzzling. We applied these models to a high S/N ROSAT PSPC observation of the Seyfert 1 galaxy NGC 4051.Comment: 36 pages, 10 figures, accepted for publication on Apj, in pres

    Reprocessing of X-rays in AGN. I. Plane parallel geometry -- test of pressure equilibrium

    Get PDF
    We present a model of the vertical stratification and the spectra of an irradiated medium under the assumption of constant pressure. Such a solution has properties intermediate between constant density models and hydrostatic equilibrium models, and it may represent a flattened configuration of gas clumps accreting onto the central black hole. Such a medium develops a hot skin, thicker than hydrostatic models, but thinner than constant density models, under comparable irradiation. The range of theoretical values of the alpha_ox index is comparable to those from hydrostatic models and both are close to the observed values for Seyfert galaxies but lower than in quasars. The amount of X-ray Compton reflection is consistent with the observed range. The characteristic property of the model is a frequently multicomponent iron K alpha line.Comment: accepted for publication in Astronomy and Astrophysic

    High resolution study of associated C IV absorption systems in NGC 5548

    Get PDF
    We present the results of a careful analysis of associated absorption systems toward NGC 5548. Most of the well resolved narrow components in the associated system, defined by the Lyman alpha, C IV and N V profiles, show velocity separation similar (to within 10~\kms) to the C IV doublet splitting. We estimate the chance probability of occurrence of such pairs with velocity separation equal to C IV doublet splitting to be 6×10−36\times10^{-3}. Thus it is more likely that most of the narrow components are line-locked with C IV doublet splitting. This will mean that the radiative acceleration plays an important role in the kinematics of the absorbing clouds. We build grids of photoionization models and estimate the radiative acceleration due to all possible bound-bound transitions. We show that the clouds producing absorption have densities less than 109cm−310^9 cm^{-3}, and are in the outer regions of the broad emission line region (BLR). We note that the clouds which are line-locked cannot produce appreciable optical depths of O VII and O VIII, and hence cannot be responsible for the observed ionized edges, in the soft X-ray. We discuss the implications of the presence of optically thin clouds in the outer regions of the BLR to the models of broad emission lines.Comment: 21 pages, latex (aasms4 style), incluedes 4 ps figures. To appear in Astrophysical Journa

    Fetal Environment and Schizophrenia

    Get PDF
    Schizophrenia and related disorders are adult-onset illnesses with no definitively established risk factors. Several studies report that exposures to infection and nutritional deprivation during early development may elevate the risk of later developing schizophrenia, specifically during the prenatal period. Preliminary evidence implicates lead exposure as well, suggesting that chemical exposures during early development may constitute a new class of risk factors for schizophrenia that has not been adequately investigated. Exposure to lead is given as an example of a chemical agent for which some effects have been described throughout the life course on both general neurodevelopmental outcomes and now on a specific psychiatric diagnosis. Findings from prospectively collected birth cohorts are offered as examples of both innovations in methodology and opportunities for future generations of investigators

    Outbursts from IGR J17473-2721

    Full text link
    We have investigated the outbursts of IGR J17473-2721. We analyzed all available observations carried out by RXTE on IGR J17473-2721 during its later outburst and as well all the available SWIFT/BAT data. The flux of the latter outburst rose in ~ one month and then kept roughly constant for the following ~ two months. During this time period, the source was in a low/hard state. The source moved to a high/soft state within the following three days, accompanied by the occurrence of an additional outburst at soft X-rays and the end of the preceding outburst in hard X-rays. During the decay of this soft outburst, the source went back to a low/hard state within 6 days, with a luminosity 4 times lower than the first transition. This shows a full cycle of the hysteresis in transition between the hard and the soft states. The fact that the flux remained roughly constant for ~ two months at times prior to the spectral transition to a high/soft state might be regarded as the result of balancing the evaporation of the inner disk and the inward accretion flow, in a model in which the state transition is determined by the mass flow rate. Such a balance might be broken via an additional mass flow accreting onto the inner disk, which lightens the extra soft outburst and causes the state transition. However, the possibility of an origin of the emission from the jet during this time period cannot be excluded. The spectral analysis suggests an inclined XRB system for IGR J17473-2721. Such a long-lived preceding low/hard state makes IGR J17473-2721 resemble the behavior of outbursts seen in black hole X-ray binaries like GX 339-4.Comment: A&A in pres

    X-ray spectroscopy and photometry of the long-period polar AI Tri with XMM-Newton

    Full text link
    Context. The energy balance of cataclysmic variables with strong magnetic fields is a central subject in understanding accretion processes on magnetic white dwarfs. With XMM-Newton, we perform a spectroscopic and photometric study of soft X-ray selected polars during their high states of accretion. Aims. On the basis of X-ray and optical observations of the magnetic cataclysmic variable AI Tri, we derive the properties of the spectral components, their flux contributions, and the physical structure of the accretion region in soft polars. Methods. We use multi-temperature approaches in our xspec modeling of the spectra to describe the physical conditions and the structures of the post-shock accretion flow and the accretion spot on the white-dwarf surface. In addition, we investigate the accretion geometry of the system by a timing analysis of the photometric data. Results. Flaring soft X-ray emission from the heated surface of the white dwarf dominates the X-ray flux during roughly 70% of the binary cycle. This component deviates from a single black body and can be described by a superimposition of mildly absorbed black bodies with a Gaussian temperature distribution. In addition, weaker hard X-ray emission is visible nearly all the time. The spectrum from the cooling post-shock accretion flow is most closely fitted by a combination of thermal plasma mekal models with temperature profiles adapted from prior stationary two-fluid hydrodynamic calculations. The soft X-ray light curves show a dip during the bright phase, which can be interpreted as self-absorption in the accretion stream. Phase-resolved spectral modeling supports the picture of one-pole accretion and self-eclipse. One of the optical light curves corresponds to an irregular mode of accretion. During a short XMM-Newton observation at the same epoch, the X-ray emission of the system is clearly dominated by the soft component.Comment: A&A, in press; 11 pages, 9 figures, 3 table
    • 

    corecore