207 research outputs found

    Seasonal variation in marine C:N:P stoichiometry: can the composition of seston explain stable Redfield ratios?

    Get PDF
    Seston is suspended particulate organic matter, comprising a mixture of autotrophic, heterotrophic and detrital material. Despite variable proportions of these components, marine seston often exhibits relatively small deviations from the Redfield ratio (C:N:P = 106:16:1). Two time-series from the Norwegian shelf in Skagerrak are used to identify drivers of the seasonal variation in seston elemental ratios. An ordination identified water mass characteristics and bloom dynamics as the most important drivers for determining C:N, while changes in nutrient concentrations and biomass were most important for the C:P and N:P relationships. There is no standardized method for determining the functional composition of seston and the fractions of POC, PON and PP associated with phytoplankton, therefore any such information has to be obtained by indirect means. In this study, a generalized linear model was used to differentiate between the live autotrophic and non-autotrophic sestonic fractions, and for both stations the non-autotrophic fractions dominated with respective annual means of 76 and 55%. This regression model approach builds on assumptions (e.g. constant POC:Chl-a ratio) and the robustness of the estimates were explored with a bootstrap analysis. In addition the autotrophic percentage calculated from the statistical model was compared with estimated phytoplankton carbon, and the two independent estimates of autotrophic percentage were comparable with similar seasonal cycles. The estimated C:nutrient ratios of live autotrophs were, in general, lower than Redfield, while the non-autotrophic C:nutrient ratios were higher than the live autotrophic ratios and above, or close to, the Redfield ratio. This is due to preferential remineralization of nutrients, and the P content mainly governed the difference between the sestonic fractions. Despite the seasonal variability in seston composition and the generally low contribution of autotrophic biomass, the variation observed in the total seston ratios was low compared to the variation found in dissolved and particulate pools. Sestonic C:N:P ratios close to the Redfield ratios should not be used as an indicator of phytoplankton physiological state, but could instead reflect varying contributions of sestonic fractions that sum up to an elemental ratio close to Redfield

    Considerations for Evaluating Ultraviolet Radiation-Induced Genetic Damage Relative to Antarctic Ozone Depletion

    Get PDF
    Springtime ozone depletion over the Antarctic results in increased UVB in local marine environments. It has been established that decreases in primary productivity occur with decreases in ozone concentrations, but the impact of increased UVB on the functioning and stability of the ecosystem has not yet been determined. Very little has been done to evaluate the potential for genetic damage caused by the increase in UVB, and this type of damage is most significant relative to the fitness and maintenance of populations. An essential problem in evaluating genotoxic effects is the lack of appropriate techniques to sample and quantify genetic damage in field populations under ambient UVB levels. In addition, it is currently not feasible to estimate exposure levels for organisms in their natural habitats

    Increased risk of phosphorus limitation at higher temperatures for Daphnia magna

    Get PDF
    Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interaction, we conducted a study on the somatic growth rate (SGR) of the cladoceran Daphnia magna, known to be susceptible to P-limitation. We determined the SGR across a broad range of dietary P content of algae (carbon (C):P ratios (125–790), and at different temperatures (10–25°C). There was a strong impact of both temperature and C:P ratio on the SGR of D. magna, and also a significant interaction between both factors was revealed. The negative effect of dietary C:P on growth rate was reduced with decreased temperature. We found no evidence of P limitation at lowest temperature, suggesting that enzyme kinetics or other measures of food quality overrides the demands for P to RNA and protein synthesis at low temperatures. These findings also indicate an increased risk of P limitation and thus reduced growth efficiency at high temperatures

    Grazing Rates of Calanus finmarchicus on Thalassiosira weissflogii Cultured under Different Levels of Ultraviolet Radiation

    Get PDF
    UVB alters photosynthetic rate, fatty acid profiles and morphological characteristics of phytoplankton. Copepods, important grazers of primary production, select algal cells based upon their size, morphological traits, nutritional status, and motility. We investigated the grazing rates of the copepod Calanus finmarchicus on the diatom Thalassiosira weissflogii cultured under 3 levels of ultraviolet radiation (UVR): photosynthetically active radiation (PAR) only (4 kJ-m−2/day), and PAR supplemented with UVR radiation at two intensities (24 kJ-m−2/day and 48 kJ-m−2/day). There was no significant difference in grazing rates between the PAR only treatment and the lower UVR treatment. However, grazing rates were significantly (∼66%) higher for copepods feeding on cells treated with the higher level of UVR. These results suggest that a short-term increase in UVR exposure results in a significant increase in the grazing rate of copepods and, thereby, potentially alters the flow rate of organic matter through this component of the ecosystem

    Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass

    Get PDF
    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations

    Nucleic Acid Content in Crustacean Zooplankton: Bridging Metabolic and Stoichiometric Predictions

    Get PDF
    Metabolic and stoichiometric theories of ecology have provided broad complementary principles to understand ecosystem processes across different levels of biological organization. We tested several of their cornerstone hypotheses by measuring the nucleic acid (NA) and phosphorus (P) content of crustacean zooplankton species in 22 high mountain lakes (Sierra Nevada and the Pyrenees mountains, Spain). The P-allocation hypothesis (PAH) proposes that the genome size is smaller in cladocerans than in copepods as a result of selection for fast growth towards P-allocation from DNA to RNA under P limitation. Consistent with the PAH, the RNA:DNA ratio was >8-fold higher in cladocerans than in copepods, although ‘fast-growth’ cladocerans did not always exhibit higher RNA and lower DNA contents in comparison to ‘slow-growth’ copepods. We also showed strong associations among growth rate, RNA, and total P content supporting the growth rate hypothesis, which predicts that fast-growing organisms have high P content because of the preferential allocation to P-rich ribosomal RNA. In addition, we found that ontogenetic variability in NA content of the copepod Mixodiaptomus laciniatus (intra- and interstage variability) was comparable to the interspecific variability across other zooplankton species. Further, according to the metabolic theory of ecology, temperature should enhance growth rate and hence RNA demands. RNA content in zooplankton was correlated with temperature, but the relationships were nutrient-dependent, with a positive correlation in nutrient-rich ecosystems and a negative one in those with scarce nutrients. Overall our results illustrate the mechanistic connections among organismal NA content, growth rate, nutrients and temperature, contributing to the conceptual unification of metabolic and stoichiometric theories.This research was supported by the Spanish Ministries of Science and Innovation (CGL2011-23681/BOS), and Environment, Rural and Marine Affairs (OAPN2009/067); ‘Consejería de Innovación, Ciencia y Empresa – Junta de Andalucía’ (Excelencia CVI-02598; P09-RNM-5376); The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and Stockholm University’s strategic marine environmental research program ‘Baltic Ecosystem Adaptive Management’, and a Spanish government ‘Formación de Profesorado Universitario’ fellowship to F.J. Bullejos

    Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna

    Get PDF
    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25°C and fed algae with 10 different molar C:P ratios (95–660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10°C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q10 value, responded non-linearly with C:P, with Q10 ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality

    Case Study: LifeWatch Italy Phytoplankton VRE

    Get PDF
    LifeWatch Italy, the Italian node of LifeWatch ERIC, has promoted and stimulated the debate on the use of semantics in biodiversity data management. Actually, biodiversity and ecosystems data are very heterogeneous and need to be better managed to improve the actual scientific knowledge extracted, as well as to address the urgent societal challenges concerning environmental issues. LifeWatch Italy has realized the Phytoplankton Virtual Research Environment (hereafter Phytoplankton VRE), a collaborative working environment supporting researchers to address basic and applied studies on phytoplankton ecology. The Phytoplankton VRE provides the IT infrastructure to enable researchers to obtain, share and analyse phytoplankton data at a level of resolution from individual cells to whole assemblages. A semantic approach has been used to address data harmonisation, integration and discovery: an interdisciplinary team has developed a thesaurus on phytoplankton functional traits and linked its concepts to other existing conceptual schemas related to the specific domain

    Temporal Asynchrony of Trophic Status Between Mainstream and Tributary Bay Within a Giant Dendritic Reservoir: The Role of Local-Scale Regulators

    Get PDF
    Limnologists have regarded temporal coherence (synchrony) as a powerful tool for identifying the relative importance of local-scale regulators and regional climatic drivers on lake ecosystems. Limnological studies on Asian reservoirs have emphasized that climate and hydrology under the influences of monsoon are dominant factors regulating seasonal patterns of lake trophic status; yet, little is known of synchrony or asynchrony of trophic status in the single reservoir ecosystem. Based on monthly monitoring data of chlorophyll a, transparency, nutrients, and nonvolatile suspended solids (NVSS) during 1-year period, the present study evaluated temporal coherence to test whether local-scale regulators disturb the seasonal dynamics of trophic state indices (TSI) in a giant dendritic reservoir, China (Three Gorges Reservoir, TGR). Reservoir-wide coherences for TSICHL, TSISD, and TSITP showed dramatic variations over spatial scale, indicating temporal asynchrony of trophic status. Following the concept of TSI differences, algal productivity in the mainstream of TGR and Xiangxi Bay except the upstream of the bay were always limited by nonalgal turbidity (TSICHL−TSISD <0) rather than nitrogen and phosphorus (TSICHL−TSITN <0 and TSICHL−TSITP <0). The coherence analysis for TSI differences showed that local processes of Xiangxi Bay were the main responsible for local asynchrony of nonalgal turbidity limitation levels. Regression analysis further proved that local temporal asynchrony for TSISD and nonalgal turbidity limitation levels were regulated by local dynamics of NVSS, rather than geographical distance. The implications of the present study are to emphasize that the results of trophic status obtained from a single environment (reservoir mainstream) cannot be extrapolated to other environments (tributary bay) in a way that would allow its use as a sentinel site
    corecore