483 research outputs found

    Non-operative treatment of common finger injuries

    Get PDF
    Finger fractures are common injuries with a wide spectrum of presentation. Although a vast majority of these injuries may be treated non-operatively with gentle reduction, appropriate splinting, and careful follow-up, health care providers must recognize injury patterns that require more specialized care. Injuries involving unstable fracture patterns, intra-articular extension, or tendon function tend to have suboptimal outcomes with non-operative treatment. Other injuries including terminal extensor tendon injuries (mallet finger), stable non-articular fractures, and distal phalanx tuft fractures are readily treated by conservative means, and in general do quite well. Appropriate understanding of finger fracture patterns, treatment modalities, and injuries requiring referral is critical for optimal patient outcomes

    Fracture Risk Assessment in Chronic Kidney Disease, Prospective Testing Under Real World Environments (FRACTURE): a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) is associated with an increased risk of fracture. Decreased bone mass and disruption of microarchitecture occur early in the course of CKD and worsens with the progressive decline in renal function so that at the time of initiation of dialysis at least 50% of patients have had a fracture. Despite the excess fracture risk, and the associated increases in morbidity and mortality, little is known about the factors that are associated with an increase in fracture risk. Our study aims to identify prognostic factors for bone loss and fractures in patients with stages 3 to 5 CKD.</p> <p>Methods</p> <p>This prospective study aims to enroll two hundred and sixty men and women with stages 3 to 5 CKD. Subjects will be followed for 24 months and we will examine the ability of: 1) bone mineral density by dual x-ray absorptiometry at the spine, hip, and radius; 2) volumetric bone density by high resolution peripheral quantitated computed tomography at the radius and tibia; 3) serum markers of bone turnover; 4) bone formation rate by bone biopsy; and 5) muscle strength and balance to predict spine and non-spine fractures, identified by self-report and/or vertebral morphometry. All measurements will be obtained at baseline, at 12 and at 24 months with the exception of bone biopsy, which will be measured once at 12 months. Subjects will be contacted every 4 months to determine if there have been incident fractures or falls.</p> <p>Discussion</p> <p>This study is one of the first that aims to identify risk factors for fracture in early stage CKD patients. Ultimately, by identifying risk factors for fracture and targeting treatments in this group-before the initiation of renal replacement therapy - we will reduce the burden of disease due to fractures among patients with CKD.</p

    The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of head-to-head trials, indirect comparisons of randomized placebo-controlled trials may provide a viable option to assess relative efficacy. The purpose was to estimate the relative efficacy of reduction of fractures in post-menopausal women, and to assess robustness of the results.</p> <p>Methods</p> <p>A systematic literature review of multiple databases identified randomized placebo-controlled trials with nine drugs for post-menopausal women. Odds ratio and 95% credibility intervals for the rates of hip, non-vertebral, vertebral, and wrist fractures for each drug and between drugs were derived using a Bayesian approach. A drug was ranked as the most efficacious if it had the highest posterior odds ratio, or had the highest effect size.</p> <p>Results</p> <p>30 studies including 59,209 patients reported fracture rates for nine drugs: alendronate (6 studies), denosumab (1 study), etidronate (8 studies), ibandronate (4 studies), raloxifene (1 study), risedronate (7 studies), strontium (2 study), teriparatide (1 study), and zoledronic acid (1 study). The drugs with the highest probability of reducing non-vertebral fractures was etidronate and teriparatide while the drugs with the highest probability of reducing vertebral, hip or wrist fractures were teriparatide, zoledronic acid and denosumab. The drugs with the largest effect size for vertebral fractures were zoledronic acid, teriparatide and denosumab, while the drugs with the highest effect size for non-vertebral, hip or wrist fractures were alendronate or risedronate. Estimates were consistent between Bayesian and classical approaches.</p> <p>Conclusion</p> <p>Teriparatide, zoledronic acid and denosumab have the highest probabilities of being most efficacious for non-vertebral and vertebral fractures, and having the greatest effect sizes. The estimates from indirect comparisons were robust to differences in methodology.</p

    Mutations of Different Molecular Origins Exhibit Contrasting Patterns of Regional Substitution Rate Variation

    Get PDF
    Transitions at CpG dinucleotides, referred to as “CpG substitutions”, are a major mutational input into vertebrate genomes and a leading cause of human genetic disease. The prevalence of CpG substitutions is due to their mutational origin, which is dependent on DNA methylation. In comparison, other single nucleotide substitutions (for example those occurring at GpC dinucleotides) mainly arise from errors during DNA replication. Here we analyzed high quality BAC-based data from human, chimpanzee, and baboon to investigate regional variation of CpG substitution rates

    Frustrated hierarchical synchronization and emergent complexity in the human connectome network

    Get PDF
    The spontaneous emergence of coherent behavior through synchronization plays a key role in neural function, and its anomalies often lie at the basis of pathologies. Here we employ a parsimonious (mesoscopic) approach to study analytically and computationally the synchronization (Kuramoto) dynamics on the actual human-brain connectome network. We elucidate the existence of a so-far-uncovered intermediate phase, placed between the standard synchronous and asynchronous phases, i.e. between order and disorder. This novel phase stems from the hierarchical modular organization of the connectome. Where one would expect a hierarchical synchronization process, we show that the interplay between structural bottlenecks and quenched intrinsic frequency heterogeneities at many different scales, gives rise to frustrated synchronization, metastability, and chimera-like states, resulting in a very rich and complex phenomenology. We uncover the origin of the dynamic freezing behind these features by using spectral graph theory and discuss how the emerging complex synchronization patterns relate to the need for the brain to access –in a robust though flexible way– a large variety of functional attractors and dynamical repertoires without ad hoc fine-tuning to a critical pointWe acknowledge financial support from J. de Andalucía, grant P09-FQM-4682 and we thank O. Sporns for providing us access to the human connectome data

    Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis

    Get PDF
    In an open-label extension study, BMD increased continuously with strontium ranelate over 10 years in osteoporotic women (P < 0.01). Vertebral and nonvertebral fracture incidence was lower between 5 and 10 years than in a matched placebo group over 5 years (P < 0.05). Strontium ranelate's antifracture efficacy appears to be maintained long term. INTRODUCTION: Strontium ranelate has proven efficacy against vertebral and nonvertebral fractures, including hip, over 5 years in postmenopausal osteoporosis. We explored long-term efficacy and safety of strontium ranelate over 10 years. METHODS: Postmenopausal osteoporotic women participating in the double-blind, placebo-controlled phase 3 studies SOTI and TROPOS to 5 years were invited to enter a 5-year open-label extension, during which they received strontium ranelate 2 g/day (n = 237, 10-year population). Bone mineral density (BMD) and fracture incidence were recorded, and FRAX(R) scores were calculated. The effect of strontium ranelate on fracture incidence was evaluated by comparison with a FRAX(R)-matched placebo group identified in the TROPOS placebo arm. RESULTS: The patients in the 10-year population had baseline characteristics comparable to those of the total SOTI/TROPOS population. Over 10 years, lumbar BMD increased continuously and significantly (P < 0.01 versus previous year) with 34.5 +/- 20.2% relative change from baseline to 10 years. The incidence of vertebral and nonvertebral fracture with strontium ranelate in the 10-year population in years 6 to 10 was comparable to the incidence between years 0 and 5, but was significantly lower than the incidence observed in the FRAX(R)-matched placebo group over 5 years (P < 0.05); relative risk reductions for vertebral and nonvertebral fractures were 35% and 38%, respectively. Strontium ranelate was safe and well tolerated over 10 years. CONCLUSIONS: Long-term treatment with strontium ranelate is associated with sustained increases in BMD over 10 years, with a good safety profile. Our results also support the maintenance of antifracture efficacy over 10 years with strontium ranelate

    Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology

    Get PDF
    Background: In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes. Methods and Findings: In the present study we have addressed this application by using CreER technology to noninvasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT)-IRES-CreER or tyrosine hydroxylase (TH)-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL)-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2)-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species. Conclusions: Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful fo

    Patients’ preferences for osteoporosis drug treatment: a discrete choice experiment

    Get PDF
    Summary: Active case finding for osteoporosis is used to identify patients at high fracture risk who may benefit from preventive drug treatment. We investigated the relative weight that women place on various aspects of preventive drugs in a discrete choice experiment. Our patients said they were prepared to take preventive drugs even if side effects were expected. Int

    Covert Genetic Selections to Optimize Phenotypes

    Get PDF
    In many high complexity systems (cells, organisms, institutions, societies, economies, etc.), it is unclear which components should be regulated to affect overall performance. To identify and prioritize molecular targets which impact cellular phenotypes, we have developed a selection procedure (“SPI”–single promoting/inhibiting target identification) which monitors the abundance of ectopic cDNAs. We have used this approach to identify growth regulators. For this purpose, complex pools of S. cerevisiae cDNA transformants were established and we quantitated the evolution of the spectrum of cDNAs which was initially present. These data emphasized the importance of translation initiation and ER-Golgi traffic for growth. SPI provides functional insight into the stability of cellular phenotypes under circumstances in which established genetic approaches cannot be implemented. It provides a functional “synthetic genetic signature” for each state of the cell (i.e. genotype and environment) by surveying complex genetic libraries, and does not require specialized arrays of cDNAs/shRNAs, deletion strains, direct assessment of clonal growth or even a conditional phenotype. Moreover, it establishes a hierarchy of importance of those targets which can contribute, either positively or negatively, to modify the prevailing phenotype. Extensions of these proof-of-principle experiments to other cell types should provide a novel and powerful approach to analyze multiple aspects of the basic biology of yeast and animal cells as well as clinically-relevant issues

    Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E

    Get PDF
    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE's HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection
    corecore