2,427 research outputs found
Bayesian Methods for Exoplanet Science
Exoplanet research is carried out at the limits of the capabilities of
current telescopes and instruments. The studied signals are weak, and often
embedded in complex systematics from instrumental, telluric, and astrophysical
sources. Combining repeated observations of periodic events, simultaneous
observations with multiple telescopes, different observation techniques, and
existing information from theory and prior research can help to disentangle the
systematics from the planetary signals, and offers synergistic advantages over
analysing observations separately. Bayesian inference provides a
self-consistent statistical framework that addresses both the necessity for
complex systematics models, and the need to combine prior information and
heterogeneous observations. This chapter offers a brief introduction to
Bayesian inference in the context of exoplanet research, with focus on time
series analysis, and finishes with an overview of a set of freely available
programming libraries.Comment: Invited revie
Holographic studies of quasi-topological gravity
Quasi-topological gravity is a new gravitational theory including
curvature-cubed interactions and for which exact black hole solutions were
constructed. In a holographic framework, classical quasi-topological gravity
can be thought to be dual to the large limit of some non-supersymmetric
but conformal gauge theory. We establish various elements of the AdS/CFT
dictionary for this duality. This allows us to infer physical constraints on
the couplings in the gravitational theory. Further we use holography to
investigate hydrodynamic aspects of the dual gauge theory. In particular, we
find that the minimum value of the shear-viscosity-to-entropy-density ratio for
this model is .Comment: 45 pages, 6 figures. v2: References adde
Holographic fermions in charged Gauss-Bonnet black hole
We study the properties of the Green's functions of the fermions in charged
Gauss-Bonnet black hole. What we want to do is to investigate how the presence
of Gauss-Bonnet coupling constant affects the dispersion relation,
which is a characteristic of Fermi or non-Fermi liquid, as well as what
properties such a system has, for instance, the Particle-hole (a)symmetry. One
important result of this research is that we find for , the behavior of
this system is different from that of the Landau Fermi liquid and so the system
can be candidates for holographic dual of generalized non-Fermi liquids. More
importantly, the behavior of this system increasingly similar to that of the
Landau Fermi liquid when is approaching its lower bound. Also we find
that this system possesses the Particle-hole asymmetry when , another
important characteristic of this system. In addition, we also investigate
briefly the cases of the charge dependence.Comment: 22 pages, 6 figures; version published in JHE
Dipole Coupling Effect of Holographic Fermion in the Background of Charged Gauss-Bonnet AdS Black Hole
We investigate the holographic fermions in the charged Gauss-Bonnet
black hole background with the dipole coupling between fermion and gauge field
in the bulk. We show that in addition to the strength of the dipole coupling,
the spacetime dimension and the higher curvature correction in the gravity
background also influence the onset of the Fermi gap and the gap distance. We
find that the higher curvature effect modifies the fermion spectral density and
influences the value of the Fermi momentum for the appearance of the Fermi
surface. There are richer physics in the boundary fermion system due to the
modification in the bulk gravity.Comment: 16 pages, accepted for publication in JHE
Consciousness and the Physical World
The main file in this deposition is a pdf file containing the scanned pages of the Proceedings. Additional files OCR.txt and OCR.pdf (the latter having the same pagination as the book) are included to simplify search, etc. Because of their automated creation using software, the accuracy of the OCR files cannot be guaranteed, though some checking has been carried out.
In the scanned version, entering 'go to page n' in a pdf reader will access the pair of pages 2n and 2n+1. Alternatively, go to the contents pages (accessible via 'go to page', entering 'contents' at the prompt) for the numbers to use with 'go to' for specific chapters.
© By arrangement with the publishers, the editors (Brian D Josephson and Vilayanur S Ramachandran) are the present copyright holders. They grant permission for the use of the material in this book in accord with the terms of the CC licence below.Edited proceedings of an interdisciplinary symposium on consciousness held at
the University of Cambridge in January 1978. The purpose of the Cambridge
conference was to encourage distinguished scientists to express their views on
the relationship of conscious experience to the physical world.The conference was supported by a grant from Research Corporation of New York
Brane-world black holes and the scale of gravity
A particle in four dimensions should behave like a classical black hole if
the horizon radius is larger than the Compton wavelength or, equivalently, if
its degeneracy (measured by entropy in units of the Planck scale) is large. For
spherically symmetric black holes in 4 + d dimensions, both arguments again
lead to a mass threshold MC and degeneracy scale Mdeg of the order of the
fundamental scale of gravity MG. In the brane-world, deviations from the
Schwarzschild metric induced by bulk effects alter the horizon radius and
effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg
might be either larger or smaller than MG. This opens up the possibility that
black holes exist with a mass smaller than MG and might be produced at the LHC
even if M>10 TeV, whereas effects due to bulk graviton exchanges remain
undetectable because suppressed by inverse powers of MG. Conversely, even if
black holes are not found at the LHC, it is still possible that MC>MG and MG
\simeq 1TeV.Comment: 4 pages, no figur
Hamstring stretch reflex:could it be a reproducible objective measure of functional knee stability?"
Background: The anterior cruciate ligament (ACL) plays an important role in anterior knee stability by preventing anterior translation of the tibia on the femur. Rapid translation of the tibia with respect to the femur produces an ACL-hamstring stretch reflex which may provide an object measure of neuromuscular function following ACL injury or reconstruction. The aim of this study was to determine if the ACL-hamstring stretch reflex could be reliably and consistently obtained using the KT-2000 arthrometer. Methods: A KT-2000 arthrometer was used to translate the tibia on the femur while recording the electromyography over the biceps femoris muscle in 20 participants, all with intact ACLs. In addition, a sub-group comprising 4 patients undergoing a knee arthroscopy for meniscal pathology, were tested before and after anaesthetic and with direct traction on the ACL during arthroscopy. The remaining 16 participants underwent testing to elicit the reflex using the KT-2000 only. Results: A total number of 182 trials were performed from which 70 trials elicited stretch reflex (38.5 %). The mean onset latency of the hamstring stretch reflexes was 58.9 ± 17.9 ms. The average pull force was 195 ± 47 N, stretch velocity 48 ± 35 mm/s and rate of force 19.7 ± 6.4 N/s. Conclusions Based on these results, we concluded that the response rate of the anterior cruciate ligament-hamstring reflex is too low for it to be reliably used in a clinical setting, and thus would have limited value in assessing the return of neuromuscular function following ACL injuries
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Analytical study on holographic superconductors in external magnetic field
We investigate the holographic superconductors immersed in an external
magnetic field by using the analytical approach. We obtain the spatially
dependent condensate solutions in the presence of the magnetism and find
analytically that the upper critical magnetic field satisfies the relation
given in the Ginzburg-Landau theory. We observe analytically the reminiscent of
the Meissner effect where the magnetic field expels the condensate. Extending
to the D-dimensional Gauss-Bonnet AdS black holes, we examine the influence
given by the Gauss-Bonnet coupling on the condensation. Different from the
positive coupling, we find that the negative Gauss-Bonnet coupling enhances the
condensation when the external magnetism is not strong enough.Comment: revised version, to appear in JHE
- …
