We investigate the holographic fermions in the charged Gauss-Bonnet AdSd
black hole background with the dipole coupling between fermion and gauge field
in the bulk. We show that in addition to the strength of the dipole coupling,
the spacetime dimension and the higher curvature correction in the gravity
background also influence the onset of the Fermi gap and the gap distance. We
find that the higher curvature effect modifies the fermion spectral density and
influences the value of the Fermi momentum for the appearance of the Fermi
surface. There are richer physics in the boundary fermion system due to the
modification in the bulk gravity.Comment: 16 pages, accepted for publication in JHE