14 research outputs found

    Postresectional lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute respiratory dysfunction syndrome (ARDS), defined as acute hypoxemia accompanied by radiographic pulmonary infiltrates without a clearly identifiable cause, is a major cause of morbidity and mortality after pulmonary resection. The aim of the study was to determine the pre and intraoperative factors associated with ARDS after pulmonary resection retrospectively.</p> <p>Methods</p> <p>Patients undergoing elective pulmonary resection at Adnan Menderes University Medical Faculty Thoracic Surgery Department from January 2005 to February 2010 were included in this retrospective study. The authors collected data on demographics, relevant co-morbidities, the American Society of Anesthesiologists (ASA) Physical Status classification score, pulmonary function tests, type of operation, duration of surgery and intraoperative fluid administration (fluid therapy and blood products). The primary outcome measure was postoperative ARDS, defined as the need for continuation of mechanical ventilation for greater than 48-hours postoperatively or the need for reinstitution of mechanical ventilation after extubation. Statistical analysis was performed with Fisher exact test for categorical variables and logistic regression analysis for continuous variables.</p> <p>Results</p> <p>Of one hundred forty-three pulmonary resection patients, 11 (7.5%) developed postoperative ARDS. Alcohol abuse (p = 0.01, OR = 39.6), ASA score (p = 0.001, OR: 1257.3), resection type (p = 0.032, OR = 28.6) and fresh frozen plasma (FFP)(p = 0.027, OR = 1.4) were the factors found to be statistically significant.</p> <p>Conclusion</p> <p>In the light of the current study, lung injury after lung resection has a high mortality. Preoperative and postoperative risk factor were significant predictors of postoperative lung injury.</p

    Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Union’s Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administration’s Climate Program Office

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Ziehl-neelsen staining technique can diagnose paragonimiasis

    Get PDF
    BACKGROUND: We evaluated the Ziehl-Neelsen staining (ZNS) technique for the diagnosis of paragonimiasis in Laos and compared different modifications of the ZNS techniques. METHODOLOGY: WE APPLIED THE FOLLOWING APPROACH: We (1) examined a paragonimiasis index case's sputum with wet film direct examination (WF) and ZNS; (2) re-examined stored ZNS slides from two provinces; (3) compared prospectively WF, ZNS, and formalin-ether concentration technique (FECT) for sputum examination of patients with chronic cough; and (4) compared different ZNS procedures. Finally, we assessed excess direct costs associated with the use of different diagnostic techniques. PRINCIPAL FINDINGS: Paragonimus eggs were clearly visible in WF and ZNS sputum samples of the index case. They appeared brownish-reddish in ZNS and were detected in 6 of 263 archived ZNS slides corresponding to 5 patients. One hundred sputum samples from 43 patients were examined with three techniques, which revealed that 6 patients had paragonimiasis (13 positive samples). Sensitivity per slide of the FECT, ZNS and the WF technique was 84.6 (p = 0.48), 76.9 (p = 0.25) and 61.5% (p = 0.07), respectively. Percentage of fragmented eggs was below 19% and did not differ between techniques (p = 0.13). Additional operational costs per slide were 0 (ZNS), 0.10 US(WF),and0.79US (WF), and 0.79 US (FECT). ZNS heated for five minutes contained less eggs than briefly heated slides (29 eggs per slide [eps] vs. 42 eps, p = 0.01). Bloodstained sputum portions contained more eggs than unstained parts (3.3 eps vs. 0.7 eps, p = 0.016). CONCLUSIONS/SIGNIFICANCE: Paragonimus eggs can easily be detected in today's widely used ZNS of sputum slides. The ZNS technique appears superior to the standard WF sputum examination for paragonimiasis and eliminates the risk of tuberculosis transmission. Our findings suggest that ZNS sputum slides should also be examined routinely for Paragonimus eggs. ZNS technique has potential in epidemiological research o paragonimiasi
    corecore