11 research outputs found

    Erratum to: Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition

    Get PDF
    <p>Abstract</p> <p>Nearly monodisperse cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid&#8211;solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.</p

    Enhanced Li-Ion-Storage Performance of MoS2 through Multistage Structural Design

    No full text
    Inspired by a folded protein, multistage structural MoS2 is designed as an advanced anode material for lithium-ion batteries (LIBs). Density functional theory (DFT) calculations are initially performed, demonstrating that the ideal primary structure (P-MoS2) has saw-tooth-like edges terminated by Mo atoms and the desired secondary structure (C-MoS2) may form via crumpling. For the latter, more exposed (002) planes exist within the wrinkled parts, creating more active sites and promoting isotropic Li+ insertion. Importantly, the rate capability and capacity of a MoS2 anode are enhanced after such a P-MoS2 to C-MoS2 transition: a superb specific capacity of 1490 mAh/g for C-MoS2 at 0.1 A/g (vs. 1083 mAh/g for P-MoS2), an excellent cycling stability (858 mAh/g after 450 cycles at 0.5 A/g), and an improved rate capability of 591 mAh/g at 1 A/g (vs. 465 mAh/g) are documented. The curving effects and mechanical properties of a single C-MoS2 particle are further visualized by insitu TEM. Drastically enlarged spacing changes upon Li-insertion and high elasticity are confirmed, which lead to enhanced LIB performances and the excellent mechanical strength of C-MoS2. The present multistage design of a MoS2 structure should pave the way toward high-energy MoS2 anode materials for future LIBs

    Droplet-Based Microfluidics

    No full text
    Droplet-based microfluidics or digital microfluidics is a subclass of microfluidic devices, wherein droplets are generated using active or passive methods. The active method for generation of droplets involves the use of an external factor such as an electric field for droplet generation. Two techniques that fall in this category are dielectrophoresis (DEP) and electrowetting on dielectric (EWOD). In passive methods, the droplet generation depends on the geometry and dimensions of the device. T-junction and flow focusing methods are examples of passive methods used for generation of droplets. In this chapter the methods used for droplet generation, mixing of contents of droplets, and the manipulation of droplets are described in brief. A review of the applications of digital microfluidics with emphasis on the last decade is presented

    Search for the decay B0→γγ

    Get PDF
    We report the result of a search for the rare decay B(0) -> gamma gamma in 426 fb(-1) of data, corresponding to 226 x 10(6) B(0)(B) over bar (0) pairs, collected on the Y(4S) resonance at the PEP-II asymmetric-energy e(+)e(-) collider using the BABAR detector. We use a maximum likelihood fit to extract the signal yield and observe 21(-12)(+13) signal events with a statistical significance of 1.8 sigma. This corresponds to a branching fraction B(B(0) -> gamma gamma) = (1.7 +/- 1.1(stat.) +/- 0.2(syst.)) x 10(-7). Based on this result, we set a 90% confidence level upper limit of B(B(0) -> gamma gamma) < 3.2 x 10(-7)
    corecore