146 research outputs found

    Effects of microperfusion in hepatic diffusion weighted imaging

    Get PDF
    Clinical hepatic diffusion weighted imaging (DWI) generally relies on mono-exponential diffusion. The aim was to demonstrate that mono-exponential diffusion in the liver is contaminated by microperfusion and that the bi-exponential model is required. Nineteen fasting healthy volunteers were examined with DWI (seven b-values) using fat suppression and respiratory triggering (1.5 T). Five different regions in the liver were analysed regarding the mono-exponentially fitted apparent diffusion coefficient (ADC), and the bi-exponential model: molecular diffusion (D (slow) ) microperfusion (D (fast) ) and the respective fractions (f (slow/fast)). Data were compared using ANOVA and Kruskal-Wallis tests. Simulations were performed by repeating our data analyses, using just the DWI series acquired with b-values approximating those of previous studies. Median mono-exponentially fitted ADCs varied significantly (P <0.001) between 1.107 and 1.423 x 10(-3) mm(2)/s for the five regions. Bi-exponential fitted D-slow varied between 0.923 and 1.062 x 10(-3) mm(2)/s without significant differences (P = 0.140). D (fast) varied significantly, between 17.8 and 46.8 x 10(-3) mm(2)/s (P <0.001). F-tests showed that the diffusion data fitted the bi-exponential model significantly better than the mono-exponential model (F > 21.4, P <0.010). These results were confirmed by the simulations. ADCs of normal liver tissue are significantly dependent on the measurement location because of substantial microperfusion contamination; therefore the bi-exponential model should be used. Diffusion weighted MR imaging helps clinicians to differentiate tumours by diffusion properties Fast moving water molecules experience microperfusion, slow molecules diffusion Hepatic diffusion should be measured by bi-exponential models to avoid microperfusion contamination Mono-exponential models are contaminated with microperfusion, resulting in apparent regional diffusion differences Bi-exponential models are necessary to measure diffusion and microperfusion in the liver

    Protein profiling in hepatocellular carcinoma by label-free quantitative proteomics in two west african populations.

    Get PDF
    Background Hepatocellular Carcinoma is the third most common cause of cancer related death worldwide, often diagnosed by measuring serum AFP; a poor performance stand-alone biomarker. With the aim of improving on this, our study focuses on plasma proteins identified by Mass Spectrometry in order to investigate and validate differences seen in the respective proteomes of controls and subjects with LC and HCC. Methods Mass Spectrometry analysis using liquid chromatography electro spray ionization quadrupole time-of-flight was conducted on 339 subjects using a pooled expression profiling approach. ELISA assays were performed on four significantly differentially expressed proteins to validate their expression profiles in subjects from the Gambia and a pilot group from Nigeria. Results from this were collated for statistical multiplexing using logistic regression analysis. Results Twenty-six proteins were identified as differentially expressed between the three subject groups. Direct measurements of four; hemopexin, alpha-1-antitrypsin, apolipoprotein A1 and complement component 3 confirmed their change in abundance in LC and HCC versus control patients. These trends were independently replicated in the pilot validation subjects from Nigeria. The statistical multiplexing of these proteins demonstrated performance comparable to or greater than ALT in identifying liver cirrhosis or carcinogenesis. This exercise also proposed preliminary cut offs with achievable sensitivity, specificity and AUC statistics greater than reported AFP averages. Conclusions The validated changes of expression in these proteins have the potential for development into high-performance tests usable in the diagnosis and or monitoring of HCC and LC patients. The identification of sustained expression trends strengthens the suggestion of these four proteins as worthy candidates for further investigation in the context of liver disease. The statistical combinations also provide a novel inroad of analyses able to propose definitive cut-offs and combinations for evaluation of performance

    Bleeding and first-year mortality following hip fracture surgery and preoperative use of low-dose acetylsalicylic acid: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hip fracture is associated with high mortality. Cardiovascular disease and other comorbidities requiring long-term anticoagulant medication are common in these mostly elderly patients. The objective of our observational cohort study of patients undergoing surgery for hip fracture was to study the association between preoperative use of low-dose acetylsalicylic acid (LdAA) and intraoperative blood loss, blood transfusion and first-year all-cause mortality.</p> <p>Methods</p> <p>An observational cohort study was conducted on patients with hip fracture (cervical requiring hemiarthroplasty or pertrochanteric or subtrochanteric requiring internal fixation) participating in a randomized trial that found lack of efficacy of a compression bandage in reducing postoperative bleeding. The participants were 255 patients (โ‰ฅ50 years) of whom 118 (46%) were using LdAA (defined as โ‰ค320 mg daily) preoperatively. Bleeding variables in patients with and without LdAA treatment at time of fracture were measured and blood transfusions given were compared using logistic regression. The association between first-year mortality and preoperative use of LdAA was analyzed with Cox regression adjusting for age, sex, type of fracture, baseline renal dysfunction and baseline cardiovascular and/or cerebrovascular disease.</p> <p>Results</p> <p>Blood transfusions were given postoperatively to 74 (62.7%) LdAA-treated and 76 (54%) non-treated patients; the adjusted odds ratio was 1.8 (95% CI 1.04 to 3.3). First-year mortality was significantly higher in LdAA-treated patients; the adjusted hazard ratio (HR) was 2.35 (95% CI 1.23 to 4.49). The mortality was also higher with baseline cardiovascular and/or cerebrovascular disease, adjusted HR 2.78 (95% CI 1.31 to 5.88). Patients treated with LdAA preoperatively were significantly more likely to suffer thromboembolic events (5.7% vs. 0.7%, P = 0.03).</p> <p>Conclusions</p> <p>In patients with hip fracture (cervical treated with hemiarthroplasty or pertrochanteric or subtrochanteric treated with internal fixation) preoperative use of low-dose acetylsalicylic acid was associated with significantly increased need for postoperative blood transfusions and significantly higher all-cause mortality during one year after surgery.</p

    Conserved Alternative Splicing and Expression Patterns of Arthropod N-Cadherin

    Get PDF
    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in โ€œneuralโ€ and โ€œmesodermalโ€ splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans

    High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with acidic stores (lysosomes) in the heart

    Get PDF
    Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following ฮฒ-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20โ€‰nm in 2D electron microscopy and 3.3โ€‰nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80โ€‰ฮผm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2โ€‰nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart

    Aging of the mammalian gastrointestinal tract: a complex organ system

    Get PDF
    Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brainโ€“gutโ€“enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research

    Age and Diet Affect Gene Expression Profiles in Canine Liver Tissue

    Get PDF
    BACKGROUND: The liver plays a central role in nutrient and xenobiotic metabolism, but its functionality declines with age. Senior dogs suffer from many of the chronic hepatic diseases as elderly humans, with age-related alterations in liver function influenced by diet. However, a large-scale molecular analysis of the liver tissue as affected by age and diet has not been reported in dogs. METHODOLOGY/PRINCIPAL FINDINGS: Liver tissue samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed an animal protein-based diet (APB) or a plant protein-based diet (PPB) for 12 months. Total RNA in the liver tissue was extracted and hybridized to Affymetrix GeneChipยฎ Canine Genome Arrays. Using a 2.0-fold cutoff and false discovery rate <0.10, our results indicated that expression of 234 genes was altered by age, while 137 genes were differentially expressed by diet. Based on functional classification, genes affected by age and/or diet were involved in cellular development, nutrient metabolism, and signal transduction. In general, gene expression suggested that senior dogs had an increased risk of the progression of liver disease and dysfunction, as observed in aged humans and rodents. In particular for aged liver, genes related to inflammation, oxidative stress, and glycolysis were up-regulated, whereas genes related to regeneration, xenobiotic metabolism, and cholesterol trafficking were down-regulated. Diet-associated changes in gene expression were more common in young adult dogs (33 genes) as compared to senior dogs (3 genes). CONCLUSION: Our results provide molecular insight pertaining to the aged canine liver and its predisposition to disease and abnormalities. Therefore, our data may aid in future research pertaining to age-associated alterations in hepatic function or identification of potential targets for nutritional management as a means to decrease incidence of age-dependent liver dysfunction

    Genome-Wide Identification of Alternatively Spliced mRNA Targets of Specific RNA-Binding Proteins

    Get PDF
    BACKGROUND: Alternative splicing plays an important role in generating molecular and functional diversity in multi-cellular organisms. RNA binding proteins play crucial roles in modulating splice site choice. The majority of known binding sites for regulatory proteins are short, degenerate consensus sequences that occur frequently throughout the genome. This poses an important challenge to distinguish between functionally relevant sequences and a vast array of those occurring by chance. METHODOLOGY/PRINCIPAL FINDINGS: Here we have used a computational approach that combines a series of biological constraints to identify uridine-rich sequence motifs that are present within relevant biological contexts and thus are potential targets of the Drosophila master sex-switch protein Sex-lethal (SXL). This strategy led to the identification of one novel target. Moreover, our systematic analysis provides a starting point for the molecular and functional characterization of an additional target, which is dependent on SXL activity, either directly or indirectly, for regulation in a germline-specific manner. CONCLUSIONS/SIGNIFICANCE: This approach has successfully identified previously known, new, and potential SXL targets. Our analysis suggests that only a subset of potential SXL sites are regulated by SXL. Finally, this approach should be directly relevant to the large majority of splicing regulatory proteins for which bonafide targets are unknown

    The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers

    Get PDF
    There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated ฮฒ-galactosidase (SA-ฮฒ-gal) in our current study. We validated the use of embryonic SA-ฮฒ-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-ฮฒ-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-ฮฒ-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-ฮฒ-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms
    • โ€ฆ
    corecore