223 research outputs found

    Computational analysis of the synergy among multiple interacting genes

    Get PDF
    Diseases such as cancer are often related to collaborative effects involving interactions of multiple genes within complex pathways, or to combinations of multiple SNPs. To understand the structure of such mechanisms, it is helpful to analyze genes in terms of the purely cooperative, as opposed to independent, nature of their contributions towards a phenotype. Here, we present an information-theoretic analysis that provides a quantitative measure of the multivariate synergy and decomposes sets of genes into submodules each of which contains synergistically interacting genes. When the resulting computational tools are used for the analysis of gene expression or SNP data, this systems-based methodology provides insight into the biological mechanisms responsible for disease

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Tracking the spatial diffusion of influenza and norovirus using telehealth data: A spatiotemporal analysis of syndromic data

    Get PDF
    Background: Telehealth systems have a large potential for informing public health authorities in an early stage of outbreaks of communicable disease. Influenza and norovirus are common viruses that cause significant respiratory and gastrointestinal disease worldwide. Data about these viruses are not routinely mapped for surveillance purposes in the UK, so the spatial diffusion of national outbreaks and epidemics is not known as such incidents occur. We aim to describe the geographical origin and diffusion of rises in fever and vomiting calls to a national telehealth system, and consider the usefulness of these findings for influenza and norovirus surveillance. Methods: Data about fever calls (5- to 14-year-old age group) and vomiting calls (≥ 5-year-old age group) in school-age children, proxies for influenza and norovirus, respectively, were extracted from the NHS Direct national telehealth database for the period June 2005 to May 2006. The SaTScan space-time permutation model was used to retrospectively detect statistically significant clusters of calls on a week-by-week basis. These syndromic results were validated against existing laboratory and clinical surveillance data. Results: We identified two distinct periods of elevated fever calls. The first originated in the North-West of England during November 2005 and spread in a south-east direction, the second began in Central England during January 2006 and moved southwards. The timing, geographical location, and age structure of these rises in fever calls were similar to a national influenza B outbreak that occurred during winter 2005–2006. We also identified significantly elevated levels of vomiting calls in South-East England during winter 2005–2006. Conclusion: Spatiotemporal analyses of telehealth data, specifically fever calls, provided a timely and unique description of the evolution of a national influenza outbreak. In a similar way the tool may be useful for tracking norovirus, although the lack of consistent comparison data makes this more difficult to assess. In interpreting these results, care must be taken to consider other infectious and non-infectious causes of fever and vomiting. The scan statistic should be considered for spatial analyses of telehealth data elsewhere and will be used to initiate prospective geographical surveillance of influenza in England.

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Understanding Weather and Hospital Admissions Patterns to Inform Climate Change Adaptation Strategies in the Healthcare Sector in Uganda

    Get PDF
    Background: Season and weather are associated with many health outcomes, which can influence hospital admission rates. We examined associations between hospital admissions (all diagnoses) and local meteorological parameters in Southwestern Uganda, with the aim of supporting hospital planning and preparedness in the context of climate change. Methods: Hospital admissions data and meteorological data were collected from Bwindi Community Hospital and a satellite database of weather conditions, respectively (2011 to 2014). Descriptive statistics were used to describe admission patterns. A mixed-effects Poisson regression model was fitted to investigate associations between hospital admissions and season, precipitation, and temperature. Results: Admission counts were highest for acute respiratory infections, malaria, and acute gastrointestinal illness, which are climate-sensitive diseases. Hospital admissions were 1.16 (95% CI: 1.04, 1.31; p = 0.008) times higher during extreme high temperatures (i.e., >95th percentile) on the day of admission. Hospital admissions association with season depended on year; admissions were higher in the dry season than the rainy season every year, except for 2014. Discussion: Effective adaptation strategy characteristics include being low-cost and quick and practical to implement at local scales. Herein, we illustrate how analyzing hospital data alongside meteorological parameters may inform climate-health planning in low-resource contexts

    Association of Polymorphisms in Oxidative Stress Genes with Clinical Outcomes for Bladder Cancer Treated with Bacillus Calmette-Guérin

    Get PDF
    Genetic polymorphisms in oxidative stress pathway genes may contribute to carcinogenesis, disease recurrence, treatment response, and clinical outcomes. We applied a pathway-based approach to determine the effects of multiple single nucleotide polymorphisms (SNPs) within this pathway on clinical outcomes in non-muscle-invasive bladder cancer (NMIBC) patients treated with Bacillus Calmette-Guérin (BCG). We genotyped 276 SNPs in 38 genes and evaluated their associations with clinical outcomes in 421 NMIBC patients. Twenty-eight SNPs were associated with recurrence in the BCG-treated group (P<0.05). Six SNPs, including five in NEIL2 gene from the overall and BCG group remained significantly associated with recurrence after multiple comparison adjustments (q<0.1). Cumulative unfavorable genotype analysis showed that the risk of recurrence increased with increasing number of unfavorable genotypes. In the analysis of risk factors associated with progression to disease, rs3890995 in UNG, remained significant after adjustment for multiple comparison (q<0.1). These results support the hypothesis that genetic variations in host oxidative stress genes in NMIBC patients may affect response to therapy with BCG

    What Can Causal Networks Tell Us about Metabolic Pathways?

    Get PDF
    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies

    Agricultural, socioeconomic and environmental variables as risks for human verotoxigenic Escherichia coli (VTEC) infection in Finland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Verotoxigenic <it>E. coli </it>(VTEC) is the cause of severe gastrointestinal infection especially among infants. Between 10 and 20 cases are reported annually to the National Infectious Disease Register (NIDR) in Finland. The aim of this study was to identify explanatory variables for VTEC infections reported to the NIDR in Finland between 1997 and 2006. We applied a hurdle model, applicable for a dataset with an excess of zeros.</p> <p>Methods</p> <p>We enrolled 131 domestically acquired primary cases of VTEC between 1997 and 2006 from routine surveillance data. The isolated strains were characterized by virulence type, serogroup, phage type and pulsed-field gel electrophoresis. By applying a two-part Bayesian hurdle model to infectious disease surveillance data, we were able to create a model in which the covariates were associated with the probability for occurrence of the cases in the logistic regression part and the magnitude of covariate changes in the Poisson regression part if cases do occur. The model also included spatial correlations between neighbouring municipalities.</p> <p>Results</p> <p>The average annual incidence rate was 4.8 cases per million inhabitants based on the cases as reported to the NIDR. Of the 131 cases, 74 VTEC O157 and 58 non-O157 strains were isolated (one person had dual infections). The number of bulls per human population and the proportion of the population with a higher education were associated with an increased occurrence and incidence of human VTEC infections in 70 (17%) of 416 of Finnish municipalities. In addition, the proportion of fresh water per area, the proportion of cultivated land per area and the proportion of low income households with children were associated with increased incidence of VTEC infections.</p> <p>Conclusions</p> <p>With hurdle models we were able to distinguish between risk factors for the occurrence of the disease and the incidence of the disease for data characterised by an excess of zeros. The density of bulls and the proportion of the population with higher education were significant both for occurrence and incidence, while the proportion of fresh water, cultivated land, and the proportion of low income households with children were significant for the incidence of the disease.</p
    corecore