372 research outputs found

    Optimal Dispatch Strategy of Virtual Power Plant for Day-Ahead Market Framework

    Get PDF
    Renewable energy sources prevail as a clean energy source and their penetration in the power sector is increasing day by day due to the growing concern for climate action. However, the intermittent nature of the renewable energy based-power generation questions the grid security, especially when the utilized source is solar radiation or wind flow. The intermittency of the renewable generation can be met by the integration of distributed energy resources. The virtual power plant (VPP) is a new concept which aggregates the capacities of various distributed energy resources, handles controllable and uncontrollable loads, integrates storage devices and empowers participation as an individual power plant in the electricity market. The VPP as an energy management system (EMS) should optimally dispatch the power to its consumers. This research work is proposed to analyze the optimal scheduling of generation in VPP for the day-ahead market framework using the beetle antenna search (BAS) algorithm under various scenarios. A case study is considered for this analysis in which the constituting energy resources include a photovoltaic solar panel (PV), micro-turbine (MT), wind turbine (WT), fuel cell (FC), battery energy storage system (BESS) and controllable loads. The real-time hourly load curves are considered in this work. Three different scenarios are considered for the optimal dispatch of generation in the VPP to analyze the performance of the proposed technique. The uncertainties of the solar irradiation and the wind speed are modeled using the beta distribution method and Weibull distribution method, respectively. The performance of the proposed method is compared with other evolutionary algorithms such as particle swarm optimization (PSO) and the genetic algorithm (GA). Among these above-mentioned algorithms, the proposed BAS algorithm shows the best scheduling with the minimum operating cost of generation

    Exploiting thrips aggregation pheromones to develop a lure-and-kill strategy for the management of the bean flower thrips

    Get PDF
    The potential of semiochemicals to lure insect pests to a trap where they can be killed with biopesticides has been demonstrated as an eco-friendly pest management alternative. In this study, we tested two recently characterized male-produced aggregation pheromones of the bean flower thrips Megalurothrips sjostedti (Trybom), namely (R)-lavandulyl 3-methylbutanoate (major) and (R)-lavandulol (minor), for their field efficacy. Moreover, compatibility of these pheromones and two other thrips attractants, Lurem-TR and neryl (S)-2-methylbutanoate, with the entomopathogenic fungus (EPF) Metarhizium anisopliae ICIPE 69 has been determined. Our study revealed that the M. sjostedti aggregation pheromones have dose-dependent antifungal effects on the EPF viability, but showed no fungistatic effect at a field-realistic dose for attraction of thrips. (R)-lavandulyl 3-methylbutanoate had similar antifungal effects as neryl (S)-2-methylbutanoate 8 days after exposure; whereas, Lurem-TR had a stronger antifungal effect than other thrips attractants. In the semi-field experiments, all autoinoculation devices maintained at least 86% viability of M. anisopliae conidia after 12 days of exposure. Field trials demonstrated for the first time that (R)-lavandulyl 3-methylbutanoate increases trap catches. Our findings pave a way for designing a lure-and-kill thrips management strategy to control bean flower thrips using autoinoculation devices or spot spray application

    Socioeconomic Inequalities in Childhood Undernutrition in India: Analyzing Trends between 1992 and 2005

    Get PDF
    India experienced a rapid economic boom between 1991 and 2007. However, this economic growth has not translated into improved nutritional status among young Indian children. Additionally, no study has assessed the trends in social disparities in childhood undernutrition in the Indian context. We examined the trends in social disparities in underweight and stunting among Indian children aged less than three years using nationally representative data.We analyzed data from the three cross-sectional rounds of National Family Health Survey of India from 1992, 1998 and 2005. The social factors of interest were: household wealth, maternal education, caste, and urban residence. Using multilevel modeling to account for the nested structure and clustering of data, we fit multivariable logistic regression models to quantify the association between the social factors and the binary outcome variables. The final models additionally included age, gender, birth order of child, religion, and age of mother. We analyzed the trend by testing for interaction of the social factor and survey year in a dataset pooled from all three surveys.While the overall prevalence rates of undernutrition among Indian children less than three decreased over the 1992-2005 period, social disparities in undernutrition over these 14 years either widened or stayed the same. The absolute rates of undernutrition decreased for everyone regardless of their social status. The disparities by household wealth were greater than the disparities by maternal education. There were no disparities in undernutrition by caste, gender or rural residence.There was a steady decrease in the rates of stunting in the 1992-2005 period, while the decline in underweight was greater between 1992 and 1998 than between 1998 and 2005. Social disparities in childhood undernutrition in India either widened or stayed the same during a time of major economic growth. While the advantages of economic growth might be reaching everyone, children from better-off households, with better educated mothers appear to have benefited to a greater extent than less privileged children. The high rates of undernutrition (even among the socially advantaged groups) and the persistent social disparities need to be addressed in an urgent and comprehensive manner

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Induction of Stable Drug Resistance in Human Breast Cancer Cells Using a Combinatorial Zinc Finger Transcription Factor Library

    Get PDF
    Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust tool for inducing and understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library technology to better understand how breast cancer cells acquire resistance to fulvestrant, a clinically important anti-endocrine therapeutic agent. From a diverse collection of nearly 400,000 different ZF-TFs, we isolated six ZF-TF library members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor-positive breast cancer cell lines. Comparative gene expression profile analysis of the six different ZF-TF-transduced breast cancer cell lines revealed five distinct clusters of differentially expressed genes. One cluster was shared among all 6 ZF-TF-transduced cell lines and therefore constituted a common fulvestrant-resistant gene expression signature. Pathway enrichment-analysis of this common fulvestrant resistant signature also revealed significant overlap with gene sets associated with an estrogen receptor-negative-like state and with gene sets associated with drug resistance to different classes of breast cancer anti-endocrine therapeutic agents. Enrichment-analysis of the four remaining unique gene clusters revealed overlap with myb-regulated genes. Finally, we also demonstrated that the common fulvestrant-resistant signature is associated with poor prognosis by interrogating five independent, publicly available human breast cancer gene expression datasets. Our results demonstrate that artificial ZF-TF libraries can be used successfully to induce stable drug-resistance in human cancer cell lines and to identify a gene expression signature that is associated with a clinically relevant drug-resistance phenotype
    corecore