2,958 research outputs found

    Disruption of muscle architecture and myocardial degeneration in mice lacking desmin.

    Get PDF
    Desmin, the muscle specific intermediate filament (IF) protein encoded by a single gene, is expressed in all muscle tissues. In mature striated muscle, desmin IFs surround the Z-discs, interlink them together and integrate the contractile apparatus with the sarcolemma and the nucleus. To investigate the function of desmin in all three muscle types in vivo, we generated desmin null mice through homologous recombination. Surprisingly, desmin null mice are viable and fertile. However, these mice demonstrated a multisystem disorder involving cardiac, skeletal, and smooth muscle. Histological and electron microscopic analysis in both heart and skeletal muscle tissues revealed severe disruption of muscle architecture and degeneration. Structural abnormalities included loss of lateral alignment of myofibrils and abnormal mitochondrial organization. The consequences of these abnormalities were most severe in the heart, which exhibited progressive degeneration and necrosis of the myocardium accompanied by extensive calcification. Abnormalities of smooth muscle included hypoplasia and degeneration. The present data demonstrate the essential role of desmin in the maintenance of myofibril, myofiber, and whole muscle tissue structural and functional integrity, and show that the absence of desmin leads to muscle degeneration

    TagPaint: Covalent labelling of genetically encoded protein tags for DNA-PAINT imaging

    Full text link
    Recently, DNA-PAINT single-molecule localization microscopy (SMLM) has shown great promise for quantitative imaging; however, labelling strategies thus far have relied on multivalent and affinity-based approaches. Here, the covalent labelling of expressed protein tags (SNAP tag and Halo tag) with single DNA-docking strands and application of SMLM via DNA-PAINT is demonstrated. tagPAINT is then used for T-cell receptor signalling proteins at the immune synapse as a proof of principle

    Impact of socioeconomic deprivation on rate and cause of death in severe mental illness

    Get PDF
    Background: Socioeconomic status has important associations with disease-specific mortality in the general population. Although individuals with Severe Mental Illnesses (SMI) experience significant premature mortality, the relationship between socioeconomic status and mortality in this group remains under investigated.<p></p> Aims: To assess the impact of socioeconomic status on rate and cause of death in individuals with SMI (schizophrenia and bipolar disorder) relative to the local (Glasgow) and wider (Scottish) populations.<p></p> Methods: Cause and age of death during 2006-2010 inclusive for individuals with schizophrenia or bipolar disorder registered on the Glasgow Psychosis Clinical Information System (PsyCIS) were obtained by linkage to the Scottish General Register Office (GRO). Rate and cause of death by socioeconomic status, measured by Scottish Index of Multiple Deprivation (SIMD), were compared to the Glasgow and Scottish populations.<p></p> Results: Death rates were higher in people with SMI across all socioeconomic quintiles compared to the Glasgow and Scottish populations, and persisted when suicide was excluded. Differences were largest in the most deprived quintile (794.6 per 10,000 population vs. 274.7 and 252.4 for Glasgow and Scotland respectively). Cause of death varied by socioeconomic status. For those living in the most deprived quintile, higher drug-related deaths occurred in those with SMI compared to local Glasgow and wider Scottish population rates (12.3% vs. 5.9%, p = <0.001 and 5.1% p = 0.002 respectively). A lower proportion of deaths due to cancer in those with SMI living in the most deprived quintile were also observed, relative to the local Glasgow and wider Scottish populations (12.3% vs. 25.1% p = 0.013 and 26.3% p = <0.001). The proportion of suicides was significantly higher in those with SMI living in the more affluent quintiles relative to Glasgow and Scotland (54.6% vs. 5.8%, p = <0.001 and 5.5%, p = <0.001). Discussion and conclusions: Excess mortality in those with SMI occurred across all socioeconomic quintiles compared to the Glasgow and Scottish populations but was most marked in the most deprived quintiles when suicide was excluded as a cause of death. Further work assessing the impact of socioeconomic status on specific causes of premature mortality in SMI is needed

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    Get PDF
    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and “snapshots” to reveal LPS translocation steps across the outer membrane

    An instability criterion for nonlinear standing waves on nonzero backgrounds

    Full text link
    A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity is considered. As an example, a system with a spatially varying coefficient of the nonlinear term is studied. The nonlinearity is chosen to be repelling except on a finite interval. Localized standing wave solutions on a non-zero background, e.g., dark solitons trapped by the inhomogeneity, are identified and studied. A novel instability criterion for such states is established through a topological argument. This allows instability to be determined quickly in many cases by considering simple geometric properties of the standing waves as viewed in the composite phase plane. Numerical calculations accompany the analytical results.Comment: 20 pages, 11 figure

    New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Get PDF
    A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies

    Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.

    Get PDF
    Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present

    Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    Get PDF
    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac
    corecore