684 research outputs found

    A summer heat wave decreases the immunocompetence of the mesograzer, Idotea baltica

    Get PDF
    Extreme events associated with global change will impose increasing stress on coastal organisms. How strong biological interactions such as the host–parasite arms-race are modulated by environmental change is largely unknown. The immune system of invertebrates, in particular phagocytosis and phenoloxidase activity response are key defence mechanisms against parasites, yet they may be sensitive to environmental perturbations. We here simulated an extreme event that mimicked the European heat wave in 2003 to investigate the effect of environmental change on the immunocompetence of the mesograzer Idotea baltica. Unlike earlier studies, our experiment aimed at simulation of the natural situation as closely as possible by using long acclimation, a slow increase in temperature and a natural community setting including the animals’ providence with natural food sources (Zostera marina and Fucus vesiculosus). Our results demonstrate that a simulated heat wave results in decreased immunocompetence of the mesograzer Idotea baltica, in particular a drop of phagocytosis by 50%. This suggests that global change has the potential to significantly affect host–parasite interactions

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    ATLASGAL - properties of compact H II regions and their natal clumps

    Get PDF
    We present a complete sample of molecular clumps containing compact and ultracompact HII (UC HII) regions between ℓ = 10° and 60° and |b| < 1°, identified by combining the APEX Telescope Large Area Survey ofthe Galaxy submm and CORNISH radio continuum surveys with visual examination ofarchival infrared data. Our sample is complete to optically thin, compact and UC HII regions driven by a zero-age main-sequence star of spectral type B0 or earlier embedded within a 1000M clump. In total we identify 213 compact and UC HII regions, associated with 170 clumps. Unambiguous kinematic distances are derived for these clumps and used to estimate their masses and physical sizes, as well as the Lyman continuum fluxes and sizes of their embedded HII regions. We find a clear lower envelope for the surface density of molecular clumps hosting massive star formation of 0.05 g cm, which is consistent with a similar sample of clumps associated with 6.7 GHz masers. The mass of the most massive embedded starsis closely correlated with the mass of their natal clump. Young B stars appearto be significantly more luminous in the ultraviolet than predicted by current stellar atmosphere models. The properties of clumps associated with compact and UC HII regions are very similar to those associated with 6.7 GHz methanol masers and we speculate that there is little evolution in the structure of the molecular clumps between these two phases. Finally, we identifya significant peak in the surface density of compact and UC HII-regions associated with the W49A star-forming complex, noting that this complex is truly one of the most massive and intense regions of star formation in the Galaxy. © 2013 The Authors, Published by Oxford University Press on behalf of the Royal Astronomical Society

    Adverse reactions to metal debris occur with all types of hip replacement not just metal-on-metal hips: a retrospective observational study of 3340 revisions for adverse reactions to metal debris from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man.

    Get PDF
    BACKGROUND: Adverse reactions to metal debris (ARMD) have resulted in the high short-term failure rates observed with metal-on-metal hip replacements. ARMD has recently been reported in non-metal-on-metal total hip replacements (non-MoM THRs) in a number of small cohort studies. However the true magnitude of this complication in non-MoM THRs remains unknown. We used a nationwide database to determine the risk of ARMD revision in all non-MoM THRs, and compared patient and surgical factors associated with ARMD revision between non-MoM and MoM hips. METHODS: We performed a retrospective observational study using data from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. All primary hip replacements undergoing revision surgery for ARMD were included (n = 3,340). ARMD revision risk in non-MoM THRs was compared between different commonly implanted bearing surfaces and femoral head sizes (Chi-squared test). Differences in patient and surgical factors between non-MoM hips and MoM hips revised for ARMD were also analysed (Chi-squared test and unpaired t-test). RESULTS: Of all ARMD revisions, 7.5% (n = 249) had non-MoM bearing surfaces. The relative risk of ARMD revision was 2.35 times (95% CI 1.76-3.11) higher in ceramic-on-ceramic bearings compared with hard-on-soft bearings (0.055 vs. 0.024%; p < 0.001), and 2.80 times (95% CI 1.74-4.36) higher in 36 mm metal-on-polyethylene bearings compared to 28 mm and 32 mm metal-on-polyethylene bearings (0.058 vs. 0.021%; p < 0.001). ARMD revisions were performed earlier in non-MoM hips compared to MoM hips (mean 3.6-years vs. 5.6-years; p < 0.0001). Non-MoM hips had more abnormal findings at revision (63.1 vs. 35.7%; p < 0.001), and more intra-operative adverse events (6.4 vs. 1.6%; p < 0.001) compared to MoM hips. CONCLUSIONS: Although the overall risk of ARMD revision surgery in non-MoM THRs appears low, this risk is increasing, and is significantly higher in ceramic-on-ceramic THRs and 36 mm metal-on-polyethylene THRs. ARMD may therefore represent a significant clinical problem in non-MoM THRs

    Evaluation of a communication skills seminar for students in a Japanese medical school: a non-randomized controlled study

    Get PDF
    BACKGROUND: Little data exist for the effectiveness of communication skills teaching for medical students in non-English speaking countries. We conducted a non-randomized controlled study to examine if a short intensive seminar for Japanese medical students had any impact on communication skills with patients. METHODS: Throughout the academic year 2001–2002, a total of 105 fifth-year students (18 groups of 5 to 7 students) participated, one group at a time, in a two-day, small group seminar on medical interviewing. Half way through the year, a five-station objective structured clinical examination (OSCE) was conducted for all fifth-year students. We videotaped all the students' interaction with a standardized patient in one OSCE station that was focused on communication skills. Two independent observers rated the videotapes of 50 students who had attended the seminar and 47 who had not. Sixteen core communication skills were measured. Disagreements between raters were resolved by a third observer's rating. RESULTS: There was a statistically significant difference in proportions of students who were judged as 'acceptable' in one particular skill related to understanding patient's perspectives: asking how the illness or problems affected the patient's life, (53% in the experimental group and 30% in the control group, p = .02). No differences were observed in the other 15 core communication skills, although there was a trend for improvement in the skill for asking the patient's ideas about the illness or problems (60% vs. 40%, p = .054) and one of the relationship building skills; being attentive and empathic nonverbally (87% vs. 72%, p = .064). CONCLUSION: The results of this study suggest that a short, intensive small group seminar for Japanese medical students may have had a short-term impact on specific communication skills, pertaining to understanding patient's perspectives

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Dynamics of Immune System Gene Expression upon Bacterial Challenge and Wounding in a Social Insect (Bombus terrestris)

    Get PDF
    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge

    Increasing risk of revision due to deep infection after hip arthroplasty: A study on 97,344 primary total hip replacements in the Norwegian Arthroplasty Register from 1987 to 2007

    Get PDF
    Background and purpose Over the decades, improvements in surgery and perioperative routines have reduced the incidence of deep infections after total hip arthroplasty (THA). There is, however, some evidence to suggest that the incidence of infection is increasing again. We assessed the risk of revision due to deep infection for primary THAs reported to the Norwegian Arthroplasty Register (NAR) over the period 1987–2007
    corecore