752 research outputs found

    Benzolamide improves oxygenation and reduces acute mountain sickness during a high-altitude trek and has fewer side effects than acetazolamide at sea level.

    Get PDF
    Acetazolamide is the standard carbonic anhydrase (CA) inhibitor used for acute mountain sickness (AMS), however some of its undesirable effects are related to intracellular penetrance into many tissues, including across the blood-brain barrier. Benzolamide is a much more hydrophilic inhibitor, which nonetheless retains a strong renal action to engender a metabolic acidosis and ventilatory stimulus that improves oxygenation at high altitude and reduces AMS. We tested the effectiveness of benzolamide versus placebo in a first field study of the drug as prophylaxis for AMS during an ascent to the Everest Base Camp (5340 m). In two other studies performed at sea level to test side effect differences between acetazolamide and benzolamide, we assessed physiological actions and psychomotor side effects of two doses of acetazolamide (250 and 1000 mg) in one group of healthy subjects and in another group compared acetazolamide (500 mg), benzolamide (200 mg) and lorazepam (2 mg) as an active comparator for central nervous system (CNS) effects. At high altitude, benzolamide-treated subjects maintained better arterial oxygenation at all altitudes (3-6% higher at all altitudes above 4200 m) than placebo-treated subjects and reduced AMS severity by roughly 50%. We found benzolamide had fewer side effects, some of which are symptoms of AMS, than any of the acetazolamide doses in Studies 1 and 2, but equal physiological effects on renal function. The psychomotor side effects of acetazolamide were dose dependent. We conclude that benzolamide is very effective for AMS prophylaxis. With its lesser CNS effects, benzolamide may be superior to acetazolamide, in part, because some of the side effects of acetazolamide may contribute to and be mistaken for AMS

    The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    Get PDF
    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement

    Marathon related death due to brainstem herniation in rehydration-related hyponatraemia: a case report

    Get PDF
    Introduction: Identifying marathon runners at risk of neurological deterioration at the end of the race (within a large cohort complaining of exhaustion, dehydration, nausea, headache, dizziness, etc.) is challenging. Here we report a case of rehydration-related hyponatraemia with ensuing brain herniation. Case presentation: We report the death of runner in his 30's who collapsed in the recovery area following a marathon. Following rehydration he developed a respiratory arrest in the emergency room. He was found to be hyponatraemic (130 mM). A CT brain scan showed severe hydrocephalus and brain stem herniation. Despite emergency insertion of an extraventricular drain, he was tested for brainstem death the following morning. Funduscopy demonstrated an acute-on-chronic papilledema; CSF spectrophotometry did not reveal any trace of oxyhemoglobin or bilirubin, but ferritin levels were considerably raised (530 ng/mL, upper reference value 12 ng/mL), consistent with a previous bleed. Retrospectively it emerged that the patient had suffered from a thunderclap headache some months earlier. Subsequently he developed morning headaches and nausea. This suggests that he may have suffered from a subarachnoid haemorrhage complicated by secondary hydrocephalus. This would explain why in this case the relatively mild rehydration-related hyponatremia may have caused brain swelling sufficient for herniation. Conclusion: Given the frequency of hyponatraemia in marathon runners (serum Na <135 mM in about 13%), and the non-specific symptoms, we discuss how a simple screening test such as funduscopy may help to identify those who require urgent neuroimaging

    Observation of Coherent Elastic Neutrino-Nucleus Scattering

    Full text link
    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset

    A New Way of Identifying Biomarkers in Biomedical Basic-Research Studies

    Get PDF
    A simple, nonparametric and distribution free method was developed for quick identification of the most meaningful biomarkers among a number of candidates in complex biological phenomena, especially in relatively small samples. This method is independent of rigid model forms or other link functions. It may be applied both to metric and non-metric data as well as to independent or matched parallel samples. With this method identification of the most relevant biomarkers is not based on inferential methods; therefore, its application does not require corrections of the level of significance, even in cases of thousands of variables. Hence, the introduced method is appropriate to analyze and evaluate data of complex investigations in clinical and pre-clinical basic research, such as gene or protein expressions, phenotype-genotype associations in case-control studies on the basis of thousands of genes and SNPs (single nucleotide polymorphism), search of prevalence in sleep EEG-Data, functional magnetic resonance imaging (fMRI) or others

    Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system

    Get PDF
    Author Posting. © Nature Publishing Group, 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 450 (2007): 407-410, doi:10.1038/nature06273.Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales

    A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples

    Get PDF
    Introduction: Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. Objectives: The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. Methods: The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. Results: We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. Conclusions: The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their ‘free living’ counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials

    A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence

    Get PDF
    A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters
    • …
    corecore