28 research outputs found

    Strong but opposing effects of associational resistance and susceptibility on defense phenotype in an African savanna plant

    Get PDF
    The susceptibility of plants to herbivores can be strongly influenced by the identity, morphology and palatability of neighboring plants. While the defensive traits of neighbors often determine the mechanism and strength of associational resistance and susceptibility, the effect of neighbors on plant defense phenotype remains poorly understood. We used field surveys and a prickle-removal experiment in a semi-arid Kenyan savanna to evaluate the efficacy of physical defenses against large mammalian herbivores in a common understory plant, Solanum campylacanthum. We then quantified the respective effects of spinescent Acacia trees and short-statured grasses on browsing damage and prickle density in S. campylacanthum. We paired measurements of prickle density beneath and outside tree canopies with long-term herbivore-exclusion experiments to evaluate whether associational resistance reduced defense investment by decreasing browsing damage. Likewise, we compared defense phenotype within and outside pre-existing and experimentally created clearings to determine whether grass neighbors increased defense investment via associational susceptibility. Removing prickles increased the frequency of browsing by ~25%, and surveys of herbivory damage on defended leaves suggested that herbivores tended to avoid prickles. As predicted, associational resistance and susceptibility had opposing effects on plant phenotype: individuals growing beneath Acacia canopies (or, analogously, within large-herbivore exclosures) had a significantly lower proportion of their leaves browsed and produced ~ 70–80% fewer prickles than those outside refuges, whereas plants in grass-dominated clearings were more heavily browsed and produced nearly twice as many prickles as plants outside clearings. Our results demonstrate that associational resistance and susceptibility have strong, but opposing, effects on plant defense phenotype, and that variable herbivore damage is a major source of intraspecific variation in defense phenotype in this system

    Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation

    Get PDF
    In savannas, the tree–grass balance is governed by water, nutrients, fire and herbivory, and their interactions. We studied the hypothesis that herbivores indirectly affect vegetation structure by changing the availability of soil nutrients, which, in turn, alters the competition between trees and grasses. Nine abandoned livestock holding-pen areas (kraals), enriched by dung and urine, were contrasted with nearby control sites in a semi-arid savanna. About 40 years after abandonment, kraal sites still showed high soil concentrations of inorganic N, extractable P, K, Ca and Mg compared to controls. Kraals also had a high plant production potential and offered high quality forage. The intense grazing and high herbivore dung and urine deposition rates in kraals fit the accelerated nutrient cycling model described for fertile systems elsewhere. Data of a concurrent experiment also showed that bush-cleared patches resulted in an increase in impala dung deposition, probably because impala preferred open sites to avoid predation. Kraal sites had very low tree densities compared to control sites, thus the high impala dung deposition rates here may be in part driven by the open structure of kraal sites, which may explain the persistence of nutrients in kraals. Experiments indicated that tree seedlings were increasingly constrained when competing with grasses under fertile conditions, which might explain the low tree recruitment observed in kraals. In conclusion, large herbivores may indirectly keep existing nutrient hotspots such as abandoned kraals structurally open by maintaining a high local soil fertility, which, in turn, constrains woody recruitment in a negative feedback loop. The maintenance of nutrient hotspots such as abandoned kraals by herbivores contributes to the structural heterogeneity of nutrient-poor savanna vegetation

    The Effects of Herbivory by a Mega- and Mesoherbivore on Tree Recruitment in Sand Forest, South Africa

    Get PDF
    Herbivory by megaherbivores on woody vegetation in general is well documented; however studies focusing on the individual browsing effects of both mega- and mesoherbivore species on recruitment are scarce. We determined these effects for elephant Loxodonta africana and nyala Tragelaphus angasii in the critically endangered Sand Forest, which is restricted to east southern Africa, and is conserved mainly in small reserves with high herbivore densities. Replicated experimental treatments (400 m2) in a single forest patch were used to exclude elephant, or both elephant and nyala. In each treatment, all woody individuals were identified to species and number of stems, diameter and height were recorded. Results of changes after two years are presented. Individual tree and stem densities had increased in absence of nyala and elephant. Seedling recruitment (based on height and diameter) was inhibited by nyala, and by elephant and nyala in combination, thereby preventing recruitment into the sapling stage. Neither nyala or elephant significantly reduced sapling densities. Excluding both elephant and nyala in combination enhanced recruitment of woody species, as seedling densities increased, indicating that forest regeneration is impacted by both mega- and mesoherbivores. The Sand Forest tree community approached an inverse J-shaped curve, with the highest abundance in the smaller size classes. However, the larger characteristic tree species in particular, such as Newtonia hildebrandtii, were missing cohorts in the middle size classes. When setting management goals to conserve habitats of key importance, conservation management plans need to consider the total herbivore assemblage present and the resulting browsing effects on vegetation. Especially in Africa, where the broadest suite of megaherbivores still persists, and which is currently dealing with the ‘elephant problem’, the individual effects of different herbivore species on recruitment and dynamics of forests and woodlands are important issues which need conclusive answers

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link

    Change in dominance determines herbivore effects on plant biodiversity

    Get PDF
    Herbivores alter plant biodiversity (species richness) in many of the world’s ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis—that herbivore-induced changes in the competitive environment determine the response of plant biodiversity to herbivory irrespective of productivity. Under this hypothesis, when herbivores reduce the abundance (biomass, cover) of dominant species (for example, because the dominant plant is palatable), additional resources become available to support new species, thereby increasing biodiversity. By contrast, if herbivores promote high dominance by increasing the abundance of herbivory-resistant, unpalatable species, then resource availability for other species decreases reducing biodiversity. We show that herbivore-induced change in dominance, independent of site productivity or precipitation (a proxy for productivity), is the best predictor of herbivore effects on biodiversity in grassland and savannah sites. Given that most herbaceous ecosystems are dominated by one or a few species, altering the competitive environment via herbivores or by other means may be an effective strategy for conserving biodiversity in grasslands and savannahs globally

    The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    Full text link
    corecore