8 research outputs found

    Neurotripanosomiasis americana: aspectos clínicos de un problema básico.

    Get PDF
    Trypanosoma cruzi, causative agent of Chagas disease, affects not only cardiac and intestinal structures but also neurological structures. A high prevalence of T. cruzi infection occurs in Colombia, prompting the present study. First, a qualitative metaanalysis was undertaken using the PubMed database, the electronic internet engine Altavista, Colombian journals indexed by Colciencias, and three relevant textbooks. The following key words were used: Trypanosoma, Chagas disease, nervous system, spinal cord, central nervous system, peripheral nervous system, neuromuscular junction, autonomic nervous system, muscle, muscle disorders, neuromuscular disease, neuromuscular disorders, synapticopathies and dysautonomia. The documents analyzed numbered 116 and included original papers, reviews, case reports, editorials, brief communications, conferences and book chapters. At minimum, each document included data involving ELISA testing, indirect immunofluorescense, or parasitemia levels in the clinical, serological or histopathological studies. Polymerase chain reaction (PCR) studies were not included because of the recent introduction of PCR as a confirmatory technique for Chagas disease in Colombia. Chagas disease affects the central, the peripheral and the autonomic nervous system in humans, although its effects on the antonomic system is most commonly investigated in Colombia. Neurological lesions must be evaluated carefully, because patients may be misdiagnosed and treated as carriers of 'idiopathic' diseases. Neurological pathologies poses a serious threat in Colombia due to the prevalence of Chagas disease.Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, patología que afecta principalmente estructuras cardiacas e intestinales. Sin embargo, las complicaciones neurológicas no han sido adecuadamente identificadas y estudiadas en Colombia, a pesar de existir allí áreas geográficas que presentan prevalencias de infección iguales o mayores de las informadas en otras latitudes, en donde se le ha dado una mayor atención a este tipo de complicaciones, desde hace ya varios años. Realizamos un metanálisis cualitativo sobre el tema, en la base de datos PubMed, en el motor de búsqueda Altavista y en las revistas colombianas indexadas por Colciencias, así como en tres libros que trataban el tópico de manera específica. Usamos las palabras claves: Trypanosoma, Chagas? disease, nervous system, spinal cord, central nervous system, peripheral nervous system, neuromuscular junction, autonomic nervous system, muscle, muscle disorders, neuromuscular disease, neuromuscular disorders, synapticopathies y dysautonomia. Como criterio de inclusión se debía haber realizado e informado la prueba de ELISA, inmunofluorescencia indirecta, presencia de parasitemia o presencia de parásitos en los tejidos, dependiendo de si se trataba de un estudio clínicoserológico o histopatólogico. No tuvimos en cuenta como criterio de inclusión la realización de la prueba de reacción en cadena de la polimerasa, dado que sólo hasta épocas recientes se introdujo esta técnica en el estudio de esta patología en Colombia. Encontramos 116 manuscritos con los términos antes descritos; éstos incluían artículos originales, revisiones, informe de casos, editoriales y comunicaciones breves, así como conferencias y capítulos de libros que cumplieron con los requisitos planteados. En ellos se apreció claramente cómo la enfermedad de Chagas afecta todos los niveles del sistema nervioso central, periférico y autonómico, siendo este último sistema el que se ha estudiado con mayor profundidad en nuestro país. Consideramos que el compromiso neurosistémico producido por T. cruzi debe ser evaluado de una manera más profunda a partir de la fecha, dado que muchos de los pacientes pueden estar siendo diagnosticados, tratados y seguidos como portadores de enfermedades ?idiopáticas?. Dichas patologías pueden llegar a convertirse en una seria amenaza para la salud de muchos colombianos si no se toman las medidas de prevención y control adecuadas. Por tanto, es necesario que actuemos en consecuencia, de acuerdo con el espectro de anormalidades neurológicas que se presentan en estos pacientes, como lo demostramos en el presente trabajo

    Neurophysics Assessment of the Muscle Bioenergy Generated by Transcranial Magnetic Stimulation

    No full text
    The content of the rectified motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) has ambiguously been assessed without the precision that energy calculation deserves. This fact has misled data interpretation and misguided biomedical interventions. To definitively fill the gap that exits in the neurophysics processing of these signals, we computed, in Walls (W^), the bioenergy within the rectified MEP recorded from the human first digitorum index (FDI) muscle at rest and under isometric contraction. We also gauged the biowork exerted by this muscle. Here we show that bioenergy and biowork can accurately and successfully be assessed, validated, and determined in W^ from MEP signals induced by TMS, regardless of knowing the mathematical expression of the function of the signal. Our novel neurophysics approach represents a dramatic paradigm shift in analysis and interpretation of the content of the MEP and will give a true meaning to the content of rectified signals. Importantly, this innovative approach allowed unveiling that women exerted more bioenergy than men at the magnetic stimulations used in this study. Revisitation of conclusions drawn from studies published elsewhere assessing rectified EMG signals that have used ambiguous units is strongly recommended

    Neurophysics assessment of the muscle bioenergy generated by transcranial magnetic stimulation

    No full text
    The content of the rectified motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) has ambiguously been assessed without the precision that energy calculation deserves. This fact has misled data interpretation and misguided biomedical interventions. To definitively fill the gap that exits in the neurophysics processing of these signals, we computed, in Walls (W), the bioenergy within the rectified MEP recorded from the human first digitorum index (FDI) muscle at rest and under isometric contraction. We also gauged the biowork exerted by this muscle. Here we show that bioenergy and biowork can accurately and successfully be assessed, validated, and determined in W from MEP signals induced by TMS, regardless of knowing the mathematical expression of the function of the signal. Our novel neurophysics approach represents a dramatic paradigm shift in analysis and interpretation of the content of the MEP and will give a truemeaning to the content of rectified signals. Importantly, this innovative approach allowed unveiling that women exerted more bioenergy than men at the magnetic stimulations used in this study. Revisitation of conclusions drawn from studies published elsewhere assessing rectified EMG signals that have used ambiguous units is strongly recommended

    Associations of Childhood and Perinatal Blood Metals with Children’s Gut Microbiomes in a Canadian Gestation Cohort

    No full text
    BackgroundThe gut microbiome is important in modulating health in childhood. Metal exposures affect multiple health outcomes, but their ability to modify bacterial communities in children is poorly understood.ObjectivesWe assessed the associations of childhood and perinatal blood metal levels with childhood gut microbiome diversity, structure, species, gene family-inferred species, and potential pathway alterations.MethodsWe assessed the gut microbiome using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing in stools collected from 6- to 7-year-old children participating in the GESTation and Environment (GESTE) cohort study. We assessed blood metal concentrations [cadmium (Cd), manganese (Mn), mercury (Hg), lead (Pb), selenium (Se)] at two time points, namely, perinatal exposures at delivery (N=70) and childhood exposures at the 6- to 7-y follow-up (N=68). We used multiple covariate-adjusted statistical models to determine microbiome associations with continuous blood metal levels, including linear regression (Shannon and Pielou alpha diversity indexes), permutational multivariate analysis of variance (adonis; beta diversity distance matrices), and multivariable association model (MaAsLin2; phylum, family, species, gene family-inferred species, and pathways).ResultsChildren's blood Mn and Se significantly associated with microbiome phylum [e.g., Verrucomicrobiota (coef=-0.305, q=0.031; coef=0.262, q=0.084, respectively)] and children's blood Mn significantly associated with family [e.g., Eggerthellaceae (coef=-0.228, q=0.052)]-level differences. Higher relative abundance of potential pathogens (e.g., Flavonifractor plautii), beneficial species (e.g., Bifidobacterium longum, Faecalibacterium prausnitzii), and both potentially pathogenic and beneficial species (e.g., Bacteriodes vulgatus, Eubacterium rectale) inferred from gene families were associated with higher childhood or perinatal blood Cd, Hg, and Pb (q<0.1). We found significant negative associations between childhood blood Pb and acetylene degradation pathway abundance (q<0.1). Finally, neither perinatal nor childhood metal concentrations were associated with children's gut microbial inter- and intrasubject diversity.DiscussionOur findings suggest both long- and short-term associations between metal exposure and the childhood gut microbiome, with stronger associations observed with more recent exposure. Future epidemiologic analyses may elucidate whether the observed changes in the microbiome relate to children's health. https://doi.org/10.1289/EHP9674

    FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter

    No full text
    The SPIRE instrument for the FIRST mission will consist of a three band imaging submillimeter photometer and a two band imaging Fourier Transform Spectrometer (FTS) optimized for the 200 - 400 micrometers range, and with extended coverage out to 670 micrometers. The FTS will be used for follow-up spectroscopic studies of objects detected in photometric surveys by SPIRE and other facilities, and to perform medium resolving power (R approximately 500 at 250 micrometers ) imaging spectroscopy on galactic and nearby extra-galactic sources

    Proteasome inhibition alters mitotic progression through the upregulation of centromeric α-Satellite RNAs

    No full text
    Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA‐seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α‐Satellite RNAs. We showed that α‐Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α‐Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α‐Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor‐binding motifs within α‐Satellite centromeric arrays. Using high‐resolution three‐dimensional immuno‐FISH and ChIP‐qPCR, we showed an association between the α‐Satellite upregulation and the recruitment of the transcription factor NFY‐A to the centromere upon MG132‐induced proteasome inhibition. Together, our results show that the proteasome controls α‐Satellite RNAs associated with the regulation of mitosis

    Meta-analysis of epigenome-wide association studies of cognitive abilities.

    Get PDF
    Cognitive functions are important correlates of health outcomes across the life-course. Individual differences in cognitive functions are partly heritable. Epigenetic modifications, such as DNA methylation, are susceptible to both genetic and environmental factors and may provide insights into individual differences in cognitive functions. Epigenome-wide meta-analyses for blood-based DNA methylation levels at ~420,000 CpG sites were performed for seven measures of cognitive functioning using data from 11 cohorts. CpGs that passed a Bonferroni correction, adjusting for the number of CpGs and cognitive tests, were assessed for: longitudinal change; being under genetic control (methylation QTLs); and associations with brain health (structural MRI), brain methylation and Alzheimer's disease pathology. Across the seven measures of cognitive functioning (meta-analysis n range: 2557-6809), there were epigenome-wide significant (P < 1.7 × 10-8) associations for global cognitive function (cg21450381, P = 1.6 × 10-8), and phonemic verbal fluency (cg12507869, P = 2.5 × 10-9). The CpGs are located in an intergenic region on chromosome 12 and the INPP5A gene on chromosome 10, respectively. Both probes have moderate correlations (~0.4) with brain methylation in Brodmann area 20 (ventral temporal cortex). Neither probe showed evidence of longitudinal change in late-life or associations with white matter brain MRI measures in one cohort with these data. A methylation QTL analysis suggested that rs113565688 was a cis methylation QTL for cg12507869 (P = 5 × 10-5 and 4 × 10-13 in two lookup cohorts). We demonstrate a link between blood-based DNA methylation and measures of phonemic verbal fluency and global cognitive ability. Further research is warranted to understand the mechanisms linking genomic regulatory changes with cognitive function to health and disease
    corecore