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Abstract
Cognitive functions are important correlates of health outcomes across the life-course. Individual differences in cognitive
functions are partly heritable. Epigenetic modifications, such as DNA methylation, are susceptible to both genetic and
environmental factors and may provide insights into individual differences in cognitive functions. Epigenome-wide meta-
analyses for blood-based DNA methylation levels at ~420,000 CpG sites were performed for seven measures of cognitive
functioning using data from 11 cohorts. CpGs that passed a Bonferroni correction, adjusting for the number of CpGs and
cognitive tests, were assessed for: longitudinal change; being under genetic control (methylation QTLs); and associations
with brain health (structural MRI), brain methylation and Alzheimer's disease pathology. Across the seven measures of
cognitive functioning (meta-analysis n range: 2557–6809), there were epigenome-wide significant (P< 1.7× 10-8)
associations for global cognitive function (cg21450381, P= 1.6× 10-8), and phonemic verbal fluency (cg12507869, P=
2.5× 10-9). The CpGs are located in an intergenic region on chromosome 12 and the INPP5A gene on chromosome 10,
respectively. Both probes have moderate correlations (~0.4) with brain methylation in Brodmann area 20 (ventral temporal
cortex). Neither probe showed evidence of longitudinal change in late-life or associations with white matter brain MRI
measures in one cohort with these data. A methylation QTL analysis suggested that rs113565688 was a cis methylation QTL
for cg12507869 (P= 5× 10-5 and 4× 10-13 in two lookup cohorts). We demonstrate a link between blood-based DNA
methylation and measures of phonemic verbal fluency and global cognitive ability. Further research is warranted to
understand the mechanisms linking genomic regulatory changes with cognitive function to health and disease.

Background

Cognitive function is an important predictor of health out-
comes and mortality [1–4]. Whether this is due to differ-
ences in health literacy and lifestyle choices or if there is a
biological predisposition is not clear [5]. The complex
balance between genetic and environmental contributions to
cognitive function is poorly understood [6]. Epigenetic
modifications may provide insight into the link between
cognitive function, perturbed biological pathways and
relevance for lifelong health.
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Molecular genetic studies of unrelated individuals show
that around 30% of the variance in general cognitive
function can be explained by common genetic polymorph-
isms (single-nucleotide polymorphisms: SNPs) and variants
in linkage disequilibrium with them [7–9]. However, there
are relatively few well-established individual SNP pre-
dictors of cognitive function and those that have been
identified explain a very small proportion of the variance in
cognitive test scores [8].

Epigenetic marks may help us better understand the
interaction between genes, the environment, and health-
related quantitative traits, such as cognitive function, and
common disease outcomes [10, 11]. The epigenome helps
to regulate genes via, for example, chemical modifications
to DNA. DNA methylation typically refers to the addition
of a methyl group to a cytosine nucleotide placed next to a
guanine in the DNA sequence. The addition or removal of
the methyl group is a dynamic process and can be tissue
specific with, for example, different epigenetic signatures in
blood and brain. The proportion of cytosines methylated at
a specific CpG site can be partly explained by both genetics
and lifestyle/environment or a combination of these [12].
Studies have examined the association between DNA
methylation with genotype [13, 14], metabolic factors, such
as body mass index [15, 16], and environmental factors,
such as smoking [17]. However, no large-scale population-
based studies have examined the association of cognitive
function with DNA methylation in circulating leucocytes.

One aspect of note for epigenetic epidemiology studies of
brain-related traits (cognitive functions, schizophrenia, depres-
sion, dementia, etc.) is tissue (and cellular) specificity. As brain
samples are not likely to be available until post-mortem, a
proxy tissue is an attractive possibility to be explored for
building relevant epigenetic signatures. In epidemiological
studies, the most likely candidate is blood, which, although its
methylation patterns are often dissimilar to those in the brain
[18, 19], they have still been linked to mental health traits
[20–22]. Identifying robust methylomic differences in relation
to cognitive traits may improve our ability to predict cognitive
decline and better understand the mechanistic link between
cognitive function and deleterious health outcomes.

Here, we examine, using a meta-analytic approach, the
associations between blood-based DNA methylation and
several individual tests of cognitive functions in up to 6809
healthy, older-aged adults. First we test which, if any, CpG
probes are associated with individual cognitive functions at
an epigenome-wide level. Then we investigate these probes
to see if they are (1) under genetic control (methQTLs), (2)
stable over time, (3) associated with structural brain-
imaging measures, (4) associated with Alzheimer's disease
case–control status or neuropathology, (5) associated with
DNA methylation levels in different brain regions and (6)
associated with blood-based gene expression.

Methods

Overview

Epigenome-wide association studies were performed in 11
independent cohorts for seven cognitive function pheno-
types. The number of cohorts contributing to each of the
seven tests of cognitive function ranged from 3 to 10
(Table S1). A sample-size-based meta-analysis of Z-scores
was performed on the overlapping cohort summary output
for each cognitive test.

Cohorts

Nine of the eleven cohorts that contributed to the analysis
included participants of European ancestry: Framingham
Heart Study, InCHIANTI, Lothian Birth Cohort 1921,
Lothian Birth Cohort 1936, MOBILIZE Boston, Normative
Aging Study, Rotterdam Study (Rotterdam Bios and Rot-
terdam III) and Twins UK. The Atherosclerosis Risk in the
Community (ARIC) and Genetic Epidemiology Network of
Arteriopathy's (GENOA) cohorts included participants of
African American ancestry. Details of each cohort are pre-
sented in Appendix 1.

Cognitive measures

Scores from seven different cognitive tests were
assessed:

1. Wechsler Logical Memory [23, 24] as a measure of
verbal declarative memory. The sum of the immediate
and delayed tasks was used.

2. Wechsler Digit Symbol Test [25] or Symbol Digit
Modalities Test [26] or Letter Digit Substitution
Test [27] as a measure of processing speed, hereafter
referred to as Digit Test. The total number of
correct answers in the allocated time period was
used. The three tests listed above are highly correlated
[28].

3. Semantic Verbal Fluency [29] as a measure of an
aspect of executive function (animal naming - total
score).

4. Phonemic Verbal Fluency [29] as a measure of an
aspect of executive function (letter fluency - total
score).

5. Trail Making Test Part B [30] as a measure of an
aspect of executive function (Natural log (ln) of the
time taken in seconds).

6. Boston Naming Test [31] or National Adult Reading
Test [32] or any other measure of vocabulary. The
total number of correct answers was assessed.

7. Mini-Mental State Examination (MMSE) [33] as a
measure of general cognitive function. Individuals

R. E. Marioni et al.



with a score of less than 24 out of 30 were excluded
from the analysis.

With the exception of the MMSE scores, any cognitive
score that fell above or below 3.5 standard deviations from
the mean was set to the mean plus or minus 3.5 standard
deviations, respectively. These analyses were performed
within each cohort independently for each cognitive test.
Full details of the tests available within each cohort are
provided in Appendix 1.

DNA methylation

Whole-blood DNA methylation was assessed in each cohort
using the Illumina HumanMethylation450 BeadChips [34].
Quality control was performed according to cohort-specific
thresholds, described in Appendix 1. The blood samples for
DNA methylation and cognitive ability were measured
concurrently.

Structural brain imaging

1.5 T structural brain imaging was assessed in one of the
participating epigenome-wide association study (EWAS)
cohorts: The Lothian Birth Cohort 1936. Full details have
been reported previously [35]. Here, we considered two
measures of white matter connectivity—fractional aniso-
tropy (directional coherence of water diffusion) and mean
diffusivity (average magnitude of water diffusion)—that
have been previously associated with cognitive function
[36, 37].

Gene expression

The association between DNA methylation and gene
expression was assessed using the Affymetrix Human Exon
1.0 ST Array in one of the participating cohorts: The Fra-
mingham Heart Study. Methodological details are provided
in Appendix 1.

Ethics

Ethical permission for each cohort is described in Appen-
dix 1. Written informed consent was obtained from all
subjects.

Statistical analysis

Epigenome-wide association testing

For each cognitive test, two linear regression models were
considered—a basic-adjustment model and a full-
adjustment model. Both models treated methylation at the

CpG sites (untransformed methylation beta value) as the
dependent variable with the cognitive test score as the
independent predictor of interest. In the basic-adjustment
model, covariates included age, sex, white-blood cell counts
(either measured or imputed [38]), technical covariates such
as plate, chip, array and hybridisation date, and, where
required, genetic principal components to account for
population stratification. In the fully adjusted model, the
following additional covariate terms were included: a
quadratic term for age, an age x sex interaction; smoking
status (current, ever, never) and body mass index. The
findings from the fully adjusted model were considered as
the primary output. Measurement details for all variables are
presented in Appendix 1. Age was standardised within
cohort to mean 0, variance 1, to avoid potential model
convergence issues. Individuals with prevalent dementia or
clinical stroke (including self-reported) were excluded.

Quality control filtering

Prior to the meta analysis, all probes on sex chromosomes
were removed along with non-CpG probes, and any cross-
reactive probes as reported by Chen et al. [39]. Genomic
correction was applied to any cohort-specific results file
with an empirical lambda of more than 1. The total number
of probes included in the meta-analysis for each cognitive
trait ranged between 421,335 and 421,633.

Trait-specific meta-analysis

The primary analyses were conducted in R [40]; sample-
size weighted meta-analyses were conducted in METAL
[41]. Several significance thresholds were considered. The
most liberal threshold was a within meta-analysis Benja-
mini-Hochberg false discovery rate of Q< 0.05. Next was a
within meta-analysis Bonferroni corrected P-value thresh-
old: 0.05/nprobes_max= 0.05/421,633= 1.2× 10-7. Finally,
the most conservative threshold applied was a Bonferroni
corrected P-value that also adjusted for the seven meta
analyses: 0.05/(nprobes*nmeta-analyses)= 0.05/(421,633*7)=
1.7× 10-8.

Summary meta-analysis combining all cognitive traits

Finally, a meta-analysis of the summary output from the
seven meta analyses was conducted for the fully adjusted
models using the CPASSOC software [42] in R. As the
cohorts contributed to multiple EWAS, and as the as cog-
nitive test scores are positively correlated [43], a correlation
matrix of the CpG Z-scores for the seven cognitive traits
was included to reduce the false-positive rate [42]. A test
assuming heterogeneity was assumed and default input
arguments were set.

Cognitive function EWAS



Methylation quantitative trait loci

To determine if the significant EWAS findings (at the most
conservative threshold of P < 1.7× 10-8) were partly under
genetic control, a methylation QTL analysis lookup was
performed using data from the Lothian Birth Cohorts of
1921 and 1936 (combined n= 1366), and the Brisbane
Systems Genetics Study (n= 614) [44]. The discovery and
replication thresholds set in that study were P< 1× 10-11

and P< 1× 10-6, respectively, with the combined LBC
cohorts acting as a discovery data set (P< 1× 10-11) with
BSGS as the replication study (P< 1× 10-6) and vice versa.
SNPs within 2Mbp of a CpG site were labelled cis
methylation QTLs, and only the most significant SNP for
each CpG were considered.

Longitudinal change in methylation

For the significantly associated CpG probes identified in the
meta-analyses, longitudinal data from the Lothian Birth
Cohort 1936 were used to chart change in methylation at
these CpGs between ages 70 and 76 years. Stability in
methylation levels might be indicative of potential genetic
control or a long-term fixed effect of differential cognitive
function on the probe. Variability in methylation levels may
be a by-product or cause of cognitive change over time.
Methylation data were available on participants at ages 70 (n
= 920), 73 (n= 800) and 76 (n= 618) years. Linear mixed
models with random intercept terms, adjusting for sex,
imputed white-blood cell counts and technical variables, were
used to determine the rate of change over time (the coefficient
for the fixed effect age variable in the model) for each probe.

Structural brain-imaging associations with methylation

As cognitive function is a brain-related phenotype, it was of
interest to see if blood-based methylation signatures for
cognitive function were related to brain-imaging measures.
Structural MRI data and covariate information were also
available in 552 participants at the second wave of the
Lothian Birth Cohort 1936—data from only the first wave of
the cohort were included in the EWAS. The top associations
from the EWAS meta-analyses were assessed at the second
wave of the Lothian Birth Cohort 1936 in relation to age- and
sex-adjusted brain structural fractional anisotropy and mean
diffusivity using linear regression models, adjusting for age,
sex, imputed white cell counts and technical covariates.

Blood–brain methylation correlations

Lookup analyses of significant CpG sites were performed in
published data sets for both blood and brain (prefrontal
cortex, entorhinal cortex, superior temporal gyrus and

cerebellum) based EWAS findings for Braak staging and
Alzheimer's disease status [21]. A second lookup was per-
formed using results from blood and Brodmann areas 7, 10
and 20 from post-mortem samples of 16 individuals [45].

Gene expression associations

Transcriptome-wide association studies (TWAS) were
conducted in the Framingham Heart Study for any sig-
nificant probes from the cognitive EWAS. Linear mixed
effects models with expression of each gene as the depen-
dent variable, methylation as exposure and identical cov-
ariates to the EWAS were considered. A Bonferroni
correction was applied (P< 0.05/nprobes= 0.05/17,873=
2.8× 10-6) to identify statistically significant associations.

Results

Study sample characteristics

Participants came from 11 cohorts—ranging in size from 219
to 2307 individuals (Q1–Q3: 435–920), with between 0 and
100% female participants (Q1–Q3: 52–65%), mean age
ranged from 56 to 79 years (Q1–Q3: 60–73). Two of the
cohorts (ARIC and GENOA) included participants of African
American ancestry; all other cohorts included participants of
European ancestry. The cohort-specific summary details for
each cognitive test are presented in Supplementary Table 1.
The basic-adjustment meta-analytic sample-size ranged from
2557 individuals for the Trail Making Test to 6809 indivi-
duals for the MMSE. Similar sample-sizes were observed for
the fully adjusted models with the meta-analytic results
presented in Fig. 1 and Table 1.

Epigenome-wide association study model
diagnostics

Heterogeneity was observed in the EWAS inflation statis-
tics, both within and across cohorts (Supplementary
Table 2). For example, the minimum and maximum lambda
values in LBC1936 were 1.05 and 1.25, respectively. Prior
to meta-analysis, within-cohort genomic correction was
applied where lambda exceeded 1. The meta analysis
genomic inflation statistics for the basic and fully adjusted
models ranged from 0.93 to 1.30, and 0.92 to 1.26,
respectively (Table 1).

Epigenome-wide association study of seven
cognitive traits

A list of the within-test epigenome-wide significant asso-
ciations within a given cognitive test across both models are
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presented in Supplementary Table 3. Significant associa-
tions (P< 1.2× 10-7) were observed in the basic and full
adjustment models for Phonemic Verbal Fluency (n= 4 and
n= 2), MMSE (n= 1 for both models), Vocabulary (n= 3
and n= 1), and Digit Test (n= 29 and n= 2). From the
basic-adjustment model, significant CpGs were located in
genes associated with, for example: alcohol metabolism
(ALDH2, Digit Test, cg12142865) [46], smoking (AHRR,
Digit Test, cg05575921) [17], inflammation (CCR9 and
PRRC2A, cg10475172 and cg14943908, respectively) [47,
48] and neurodegeneration through the beta-amyloid

precursor protein interactor GAPDH (Digit Test,
cg00252813) [49]. In the fully adjusted model, significant
CpGs were located in genes associated with, for example:
inflammation (SOCS3, Digit Test, cg18181703) [50], epi-
thelial cell splicing (ESRP2, Vocabulary, cg04513006) [51]
and transcription activation of NOTCH proteins (MAML3,
Phonemic Verbal Fluency, cg16201957) [52]. No CpGs
were significantly associated with the Trail Making, Logical
Memory or Semantic Verbal Fluency tests. Methylation at
cg21450381 was not associated with any of the six other
cognitive traits in the fully adjusted meta-analytic results at

Table 1 Summary of meta-
analysis results for the seven
cognitive tests

Cognitive test

Phonemic
Verbal Fluency

MMSEa Trail
Making

Logical
Memory

Vocabulary Digit
Test

Semantic
Verbal
Fluency

Nparticipants m1 6405 6809 2557 2988 3013 4794 3678

λm1 1.3 1.21 0.95 0.97 1.08 1.06 0.93

N locim1 4 1 0 0 3 29 0

Nparticipants m2 6390 6780 2549 2983 3007 4780 3658

λm2 1.26 1.16 0.97 0.99 1.1 1.03 0.92

N locim2 2 1 0 0 1 2 0

aMMSE Mini-Mental State Examination,

m1 model 1, adjusted for age, sex, cell counts, technical covariates and population stratification (genetic
principal components-cohort specific)

m2 model 2, adjusted for model 1 covariates, smoking, body mass index, age2 and an age x sex interaction
term

Fig. 1 Meta-analysis EWAS Manhattan Plots for the seven cognitive tests—full adjustment models*. *Models adjusted for age, sex, age x sex,
age2, self-reported smoking status, body mass index, white-blood cell counts, technical covariates and principal components (population
stratification)

Cognitive function EWAS



a nominal significance threshold of P< 0.05 (Table 2).
However, cg12507869 was associated with lower scores for
both Logical Memory (P= 0.043) and Vocabulary (P=
9.4× 10-5).

Variation in results when modifying the significance
threshold

Using a less conservative FDR correction for multiple
testing identified associations at a q-value threshold of 0.05
in both the basic and fully adjusted models for Phonemic
Verbal Fluency (n= 49 and n= 2), MMSE (n= 1 for both
models), Vocabulary (n= 7 and n= 3) and Digit Test
(n= 309 and n= 14). The FDR-significant probes are pre-
sented in Supplementary Table 4.

After Bonferroni correction for CpG sites and the seven
cognitive traits—P < 0.05/(420,000*7)—two remaining
differentially methylated CpGs were cg21450381
(R2= 0.47%, P= 1.6× 10-8) with MMSE scores, and
cg12507869 (R2= 0.55%, P= 2.5× 10-9) with Phonemic
Verbal Fluency. In both cases, higher methylation was
associated with lower cognitive scores across all of the
contributing cohorts. cg21450281 is located in an intergenic
region of chromosome 12; cg12507869 is located in the

inositol polyphosphate-5-phosphatase, 40 kDa (INPP5A)
gene on chromosome 10. Both probes were approximately
normally distributed in the Lothian Birth Cohort 1936
(Fig. 2). A forest plot of the Z-scores by cohort sample-size
is presented in Fig. 3 and shows no evidence of ethnic
outliers or single cohorts driving the associations.

Combined meta-analysis of all seven cognitive traits

There was no evidence from the combined meta-analytic
results of the seven tests for a globally significant CpG
across all tests in the fully adjusted model (minimum
Benjamini-Hochberg FDR q-value of 0.057 for
cg12507869).

Genetic contributions to cognitive-related
differential methylation

A methylation QTL lookup [44] analyses identified no
SNPs to be associated with cg21450381. The top SNP for
cg12507869 (rs113565688 in the INPP5A gene on chro-
mosome 10) explained around 1.2% of the variance in
methylation (P-values of 3.6× 10-13 and 5.4× 10-5 in the
Australian and Scottish cohorts, respectively). There is no
overlap of this SNP with cognitive traits based on a recent
GWAS conducted in the UK Biobank cohort: rs113565688
association with memory (P= 0.55), reaction time
(P= 0.42), verbal-numerical reasoning (P= 0.17) and
educational attainment (P= 0.13) [8].

Table 2 Lookup of top EWAS associations across all cognitive tests
in the fully adjusted models. The P-values for the initial EWAS
associations at P< 1.7x10-8 are highlighted in bold

Cognitive Test N Z P

Digit Test

cg21450381 4780 0.51 0.61

cg12507869 4780 -1.44 0.15

Vocabulary

cg21450381 3007 -0.61 0.54

cg12507869 3007 -3.91 9.4x10-5

Semantic Verbal Fluency

cg21450381 3658 -1.11 0.27

cg12507869 3658 -1.18 0.24

Logical Memory

cg21450381 2983 -1.65 0.099

cg12507869 2983 -2.03 0.043

MMSE

cg21450381 6780 -5.66 1.6x10-8

cg12507869 6780 -1.26 0.21

Trail-making Test

cg21450381 2549 1.06 0.29

cg12507869 2549 0.87 0.38

Phonemic Verbal Fluency

cg21450381 6390 -0.61 0.54

cg12507869 6390 -5.96 2.5x10-9

MMSE Mini-mental state examination

Fig. 2 Histogram showing the distribution of beta values for the two
significant CpGs in the Lothian Birth Cohort 1936 (n= 920)
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Longitudinal changes in methylation at cognitive-
related differential methylation sites

Longitudinal analyses over three waves of data (ages 70, 73
and 76 years) from LBC1936, adjusting for sex, imputed
white-blood cell counts and technical variables, found no
evidence for a linear change in the methylation of either
probe over a relatively narrow period in later-life. The
mixed model standardised effect size for change in
cg12507869 was 0.02 standard deviations per year,
P= 0.13; the standardised effect size for cg21450381 was
-0.02, P= 0.40. Without adjustment for covariates, the
across wave correlations for cg12507869 were 0.62 (age 70:
age 73), 0.63 (age 70: age 76) and 0.68 (age 73: age 76).
The corresponding correlations for cg21450381 were 0.04,
0.10 and 0.30, respectively.

Association of brain MRI features with cognitive-
related differential methylation

There were no significant associations between the top two
CpGs and either of the brain MRI measures of white matter
connectivity (mean diffusivity minimum P= 0.56; frac-
tional anisotropy minimum P= 0.28) at age 73 in the
LBC1936 (n= 552).

Correlation of blood and brain methylation at the
cognitive-related differential methylation

Two blood–brain comparisons were conducted. The first,
using a blood–brain DNA methylation comparison tool [18]
[http://epigenetics.essex.ac.uk/bloodbrain/], provided no
evidence for a significant correlation between blood-
methylation at either probe with methylation in four brain
regions (prefrontal cortex, entorhinal cortex, superior tem-
poral gyrus and cerebellum, Supplementary Figs. 1 and 2).
Whereas the mean of the cg21450381 probe was similar to
the means for the four brain regions, the mean of the
cg12507869 probe in blood was markedly different
(hypomethylated) to the means for the prefrontal cortex,
entorhinal cortex, superior temporal gyrus (Supplementary
Figs. 1 and 2). It was, however, similar to the mean of the
cerebellum. The second comparison, using BECon [45]
[https://redgar598.shinyapps.io/BECon/] showed the same
mean methylation levels for cg21450381 between blood
and Brodmann areas 7, 10 and 20; cg12507869 was again
hypomethylated in blood compared to the three brain
regions. There were moderate correlations between blood-
methylation and Brodmann area 20 for both CpGs (r= 0.43
for cg12507869 and r= -0.46 for cg21450381) and
between Brodmann area 7 and cg12507869 (r= 0.31).

Fig. 3 Forest plots of the Z-scores by cohort sample size for the two
significant CpGs. ARIC Atherosclerosis Risk in the Community, FHS
Framingham Heart Study Offspring Cohort, GENOA Genetic Epide-
miology Network of Arteriopathy, InCHIANTI Invecchiare in Chianti,
LBC Lothian Birth Cohort, MOBILIZE Maintenance of Balance,

Independent Living, Intellect and Zest in the Elderly of Boston, NAS
Normative Aging Study, RS Rotterdam Study, RS-Bios Rotterdam
Study—Biobank-based Integrative Omics Studies
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Association of cognitive-related differential
methylation with Braak staging and Alzheimer’s
disease

None of the six CpGs that were epigenome-wide significant
in the fully adjusted EWASs at P < 1.2× 10-7 were asso-
ciated with Braak staging or Alzheimer's case–control status
in either blood or brain-based methylation (minimum FDR
q-value 0.51, Supplementary Table 5).

Transcriptome-wide association study

There were no significant TWAS results for cg21450381.
The minimum P-value observed was 0.00013 (Q= 0.51).
There were nine significant TWAS results for cg12507869
at P < 2.8× 10-6 and 41 at Q < 0.05. There was a
nominal inverse association between the INPP5A
transcript and CpG (P= 0.049, Q= 0.65). The full TWAS
output for the two CpGs is shown in Supplementary
Tables 6 and 7.

Discussion

This study presents a meta-analysis of the relationship
between blood-based DNA methylation and cognitive
function. We analysed seven different cognitive tests and
found two epigenome-wide methylation correlations:
cg21450381, located in an intergenic region of chromo-
some 12, with global cognitive function (as measured by
the MMSE); and cg12507869, located in the INPP5A gene
on chromosome 10, with phonemic verbal fluency.
Methylation at the latter CpG was also associated with two
other cognitive tests (logical memory and vocabulary) at a
nominal P < 0.05 threshold. Genetic analyses of the top
two CpGs showed a modest cis regulation for one of the
probes, suggesting that the vast majority of the methyla-
tion variation at the cognitive-related differentially
methylated sites are due to environmental influences.
Blood-based methylation levels at both of the CpGs
correlated with methylation levels in Brodmann area
20 (cerebral cortex).

INPP5A is a member of the inositol polyphosphate-5-
phosphatase (INPP5) family of genes that encode enzymes
that hydrolyse inositol 1,4,5 triphosphate (IP3). It is
involved in the mobilisation of intracellular calcium, and
has been implicated in cerebellar degeneration in mice [53].
A second INPP5 family member, INPP5D, has been asso-
ciated with Alzheimer’s Disease and cognitive decline [54,
55], further implicating this gene family in cognitive func-
tions. cg21450381 is located in an intergenic region of
chromosome 12, that contains a histone modification mark
(H3K27Ac), DNAaseI hypersensitivity clusters and

evidence of transcription factor-binding sites, which indi-
cates that the region may be involved in gene regulation
[56].

In a TWAS analysis of the top two probes in the Fra-
mingham Heart Study (n > 1900), there was no evidence
for an association between cg21450381 and blood-based
gene expression. Of the nine Bonferroni-significant tran-
scripts in the TWAS of cg12507869, eight were trans
associations, with the cis association occurring in
ADAM12, which is more than 6 Mb from INPP5A. There
was no evidence of a cis effect of the CpG on the INPP5A
expression levels.

Disentangling correlation from causation is particularly
tricky when studying epigenetic marks in a non-target
tissue. By increasing the sample sizes of the meta-analytic
EWAS and replicating any findings across different cog-
nitive domains will reduce the chances of false-positive
associations. It is, of course, possible that a reliable blood-
based epigenetic marker of cognitive function may be
several degrees of separation away from the biological
processes that drive cognitive skills. For example, the
signal could be in response to neurotoxic events, such as
inflammation, oxidative stress or small vessel disease.
However, the discrimination of cause from consequence is
something that affects many epigenetic epidemiology
studies. Approaches that may overcome this include
Mendelian randomisation studies where a methQTL can be
used as an instrument, or the use of mouse models to
dissect functional consequences of DNA methylation on
gene regulation.

There are additional limitations of this study: a varying
number of participants with cognitive data available for
each test; heterogeneity in relation to the ethnicity and
geographical location of the participants across cohorts;
and relating a blood-based methylation signature to a
brain-based outcome. We attempted to counter these
limitations by: plotting cohort sample-size by Z-score to
see if there was bias due to outliers or clustering by eth-
nicity; adjusting for population stratification in the cohorts
with admixture; correlating the blood-based CpG asso-
ciations with methylation levels in several brain regions;
looking at the association between brain region-specific
methylation and Alzheimer's disease phenotypes for the
blood-based CpG associations. It is possible that bias may
have been introduced in the secondary analyses that
focussed on the MRI, gene expression and longitudinal
methylation data, as both the LBC1936 and Framingham
studies contributed to the discovery meta-analyses. Re-
running the meta-analyses without these cohorts yielded:
P-values of 1.3× 10-7 and 7.1× 10-6 for the phonemic
verbal fluency finding (cg12507869), excluding Fra-
mingham and LBC1936, respectively; and P-values of
1.7× 10-8 and 3.3× 10-6 for the MMSE finding
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(cg21450381), again excluding Framingham and
LBC1936, respectively. Whereas the longitudinal
methylation and MRI findings were null, the cis and trans
expression-methylation associations warrant confirmation
in an independent sample. The methQTL findings were
based on highly stringent discovery and replication P-
value thresholds in both LBC and an independent cohort,
BSGS.

Neither of the top two CpGs showed signs of linear
change in methylation levels between the ages of 70 and 76
years in one of the participating studies (LBC1936) that had
three waves of longitudinal data. It is possible that non-
linear changes may be present although additional waves of
data collection would be required to test this robustly. In
addition, a 6-year window is possibly too narrow to observe
substantial changes in the CpG levels.

It is notable that the two significant CpG associations
were found for the cognitive tests that were completed by
the largest number of participants (n> 6000). The study
provided results for a list of cognitive tests that cover sev-
eral major cognitive domains: memory, processing speed,
executive function, vocabulary and global ability. The het-
erogeneity with respect to ethnicity and geographic location
can allows us to generalise our findings to multiple
populations.

Blood is the most feasible tissue for epigenetic epide-
miology analyses of cognitive function. Brain would be the
ideal target tissue although this would make it impossible to
have simultaneous cognitive function data. Moreover,
epigenome-wide studies of other brain-related outcomes,
such as schizophrenia, have identified putative blood-based
methylation signatures [22].

In conclusion, we have presented evidence for blood-
based epigenetic correlates of cognitive function. Specifi-
cally, we identified methylation sites that are linked to an
aspect of executive function and global cognitive ability.
The latter finding relied on a relatively crude cognitive test
(the MMSE), which is commonly used to identify indivi-
duals at risk of dementia. One of the two CpG sites iden-
tified was under modest genetic control, with a cis SNP
explaining over 1% of its variance. Unlike other traits, such
as smoking and body mass index [15, 17], there are rela-
tively modest methylation signatures for cognitive function.
However, our analyses concur with other recent studies to
suggest that blood-based methylation signatures may be
useful tools to interrogate differences in brain-related
outcomes.
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