2,569 research outputs found

    A Geometric Approach to Massive p-form Duality

    Full text link
    Massive theories of abelian p-forms are quantized in a generalized path-representation that leads to a description of the phase space in terms of a pair of dual non-local operators analogous to the Wilson Loop and the 't Hooft disorder operators. Special atention is devoted to the study of the duality between the Topologically Massive and the Self-Dual models in 2+1 dimensions. It is shown that these models share a geometric representation in which just one non local operator suffices to describe the observables.Comment: 26 pages, LaTeX. The discussion about the equivalence between the Proca model and two seldual models, with opposite spins, was eliminated. Typos correcte

    Boundary States in B-Field Background

    Full text link
    We consider the boundary states which describe D-branes in a constant B-field background. We show that the two-form field Phi, which interpolates commutative and noncommutative descriptions of D-branes, can be interpreted as the invariant field strength in the T-dual picture. We also show that the extended algebra parametrized by theta and Phi naturally appears as the commutation relations of the original and the T-dual coordinates.Comment: 14 pages, lanlmac; version to appear in Phys. Lett.

    2-Form Gauge Field Theories and "No Go" for Yang-Mills Relativistic Actions

    Full text link
    The transformation properties of a Kalb-Ramond field are those of a gauge potential. However, it is not clear what is the group structure to which these transformations are associated. In this paper, we complete a program started in previous articles in order to clarify this question. Using the spectral theorem, we improve and generalize previous approaches and find the possible group structures underneath the 2-form gauge potential as extensions of Lie groups, when its representations are assumed to act into any tensor (or spinor) space with inner product. We also obtain a fundamental representation where a two-form field turns out to be a connection on a flat Euclidean basis manifold, with a corresponding canonical curvature. However, we show that these objects are not associated to space-time tensors and, in particular, that a standard Yang-Mills action is not relativistically invariant, except (as expected) in the Abelian case. This is our main result, from the physical point of view.Comment: To be published in Phys. Lett.

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    On the WDVV Equation and M-Theory

    Get PDF
    A wide class of Seiberg-Witten models constructed by M-theory techniques and described by non-hyperelliptic Riemann surfaces are shown to possess an associative algebra of holomorphic differentials. This is a first step towards proving that also these models satisfy the Witten-Dijkgraaf-Verlinde-Verlinde equation. In this way, similar results known for simpler Seiberg-Witten models (described by hyperelliptic Riemann surfaces and constructed without recourse to M-theory) are extended to certain non-hyperelliptic cases constructed in M-theory. Our analysis reveals a connection between the algebra of holomorphic differentials on the Riemann surface and the configuration of M-theory branes of the corresponding Seiberg-Witten model.Comment: 30 pages, Latex, some corrections made, refs adde

    Maxwell Chern Simons Theory in a Geometric Representation

    Full text link
    We quantize the Maxwell Chern Simons theory in a geometric representation that generalizes the Abelian Loop Representation of Maxwell theory. We find that in the physical sector, the model can be seen as the theory of a massles scalar field with a topological interaction that enforces the wave functional to be multivalued. This feature allows to relate the Maxwell Chern Simons theory with the quantum mechanics of particles interacting through a Chern Simons fieldComment: 12 pages, LaTe

    Comparative proteomics of adult Paragonimus kellicotti excretion/secretion products released in vitro or present in the lung cyst nodule

    Get PDF
    Paragonimus kellicotti is a zoonotic lung fluke infection, the agent of North American paragonimiasis, and an excellent model for other Paragonimus infections. The excretory/secretory proteins (ESP) released by parasites and presented at the parasite-host interface are frequently proposed to be useful targets for drugs and/or vaccines In vitro culture conditions may alter ESP compared to those produced in vivo. In order to investigate ESPs produced in vivo we took advantage of the fact that adult P. kellicotti reproduce in the lungs of experimentally infected gerbils in tissue cysts. We performed a mass-spectrometric analysis of adult P. kellicotti soluble somatic protein (SSPs) extracts, excreted/secreted proteins (ESPs) produced by adult worms during in vitro culture, and lung cyst fluid proteins (CFPs) from experimentally infected gerbils. We identified 2,137 P. kellicotti proteins that were present in at least two of three biological replicates and supported by at least two peptides. Among those were 1,914 proteins found in SSP, 947 in ESP and 37 in CFP. In silico analysis predicted that only 141 of the total 2,137 proteins were secreted via classical or non-classical pathways. The most abundant functional categories in SSP were storage and oxidative metabolism. The most abundant categories in ESP were proteins related to metabolism and signal transduction. The 37 parasite-related proteins in CFP belonged to 11 functional categories. The largest groups were proteins with unknown function, cytoskeletal proteins and proteasome machinery. 29 of these 37 proteins were shared among all three sample types. To our knowledge, this is the first study that compares in vitro and in vivo ESP for any Paragonimus species. This study has provided new insights into ESPs of food-borne trematodes that are produced and released in vivo. Proteins released at the host-parasite interface may help the parasite evade host immunity and may represent new targets for novel treatments or diagnostic tests for paragonimiasis

    Maxwell Chern-Simons Solitons from Type IIB String Theory

    Get PDF
    We study various three-dimensional supersymmetric Maxwell Chern-Simons solitons by using type IIB brane configurations. We give a systematic classification of soliton spectra such as topological BPS vortices and nontopological vortices in N=2,3\mathcal{N}=2,3 supersymmetric Maxwell Chern-Simons system via the branes of type IIB string theory. We identify the brane configurations with the soliton spectra of the field theory and obtain a nice agreement with field theory aspects. We also discuss possible brane constructions for BPS domain wall solutions.Comment: 23 pages, Latex, 4 figures; (q_1,q_2)-string convention changed, minor correction

    D-branes in Gepner models

    Full text link
    We discuss D-branes from a conformal field theory point of view. In this approach, branes are described by boundary states providing sources for closed string modes, independently of classical notions. The boundary states must satisfy constraints which fall into two classes: The first consists of gluing conditions between left- and right-moving Virasoro or further symmetry generators, whereas the second encompasses non-linear consistency conditions from world sheet duality, which severely restrict the allowed boundary states. We exploit these conditions to give explicit formulas for boundary states in Gepner models, thereby computing excitation spectra of brane configurations. From the boundary states, brane tensions and RR charges can also be read off directly.Comment: 40 pages, some corrections, references adde
    • …
    corecore