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Abstract

Paragonimus kellicotti is a zoonotic lung fluke infection, the agent of North American para-

gonimiasis, and an excellent model for other Paragonimus infections. The excretory/secre-

tory proteins (ESP) released by parasites and presented at the parasite-host interface are

frequently proposed to be useful targets for drugs and/or vaccines In vitro culture conditions

may alter ESP compared to those produced in vivo. In order to investigate ESPs produced

in vivo we took advantage of the fact that adult P. kellicotti reproduce in the lungs of experi-

mentally infected gerbils in tissue cysts. We performed a mass-spectrometric analysis of

adult P. kellicotti soluble somatic protein (SSPs) extracts, excreted/secreted proteins

(ESPs) produced by adult worms during in vitro culture, and lung cyst fluid proteins (CFPs)

from experimentally infected gerbils. We identified 2,137 P. kellicotti proteins that were pres-

ent in at least two of three biological replicates and supported by at least two peptides.

Among those were 1,914 proteins found in SSP, 947 in ESP and 37 in CFP. In silico analysis

predicted that only 141 of the total 2,137 proteins were secreted via classical or non-classi-

cal pathways. The most abundant functional categories in SSP were storage and oxidative

metabolism. The most abundant categories in ESP were proteins related to metabolism and

signal transduction. The 37 parasite-related proteins in CFP belonged to 11 functional cate-

gories. The largest groups were proteins with unknown function, cytoskeletal proteins and

proteasome machinery. 29 of these 37 proteins were shared among all three sample types.

To our knowledge, this is the first study that compares in vitro and in vivo ESP for any Para-

gonimus species. This study has provided new insights into ESPs of food-borne trematodes

that are produced and released in vivo. Proteins released at the host-parasite interface may

help the parasite evade host immunity and may represent new targets for novel treatments

or diagnostic tests for paragonimiasis.
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Author summary

Neglected tropical diseases include food-borne trematode infections such as paragonimia-

sis that causes severe illness with important social and economic consequences. In this

study, we compared excretory/secretory products (ESPs) produced by the North Ameri-

can lung fluke Paragonimus kellicotti that are released during in vitro culture with those

that are released in vivo inside the lungs of experimentally infected animals. We identified

a total of 2,137 P. kellicotti proteins. These included 1,914 proteins in soluble extracts of

whole flukes, 947 proteins identified in ESPs released during in vitro culture, and 37 pro-

teins identified in fluid recovered from lung cysts that surround adult flukes in experi-

mentally infected gerbils. The most abundant functional protein categories varied by

sample type. To our knowledge, this is the first study that has compared proteins released

in vitro and in vivo by adult Paragonimus flukes. Proteins released in vivo may help the

parasite evade host immunity. They may have practical value as novel drug targets or lead

to improved diagnostic tests for paragonimiasis.

Introduction

Lung flukes of the genus Paragonimus include about 30 species that are mainly found in Asia,

but also Africa and the Americas causing an estimated 23 million human infections [1]. Para-
gonimus kellicotti is the cause of North American paragonimiasis, and can lead to severe pul-

monary and/or extra-pulmonary diseases in carnivorous mammals including humans.

Human infections are rare, but the number of people diagnosed with this parasite species has

recently been increasing [2]. Humans become infected via consumption of raw or under-

cooked freshwater crayfish that contain the infective metacercariae. P. kellicotti is the only spe-

cies endemic to the USA and a good model for other Paragonimus species because infectious

metacercariae are readily available; a small rodent model has been established and its whole

genome has been sequenced [3,4].

Previous studies of Paragonimus secretomes were carried out mainly to investigate the com-

position and/or immunological roles of selected molecules [5–7]. Despite the technical prog-

ress of mass spectrometry, few proteomic studies have been conducted for any Paragonimus
species. The excretory/secretory proteins (ESP) released by parasites and presented at the para-

site-host interface are frequently proposed to be useful targets for drugs and/or vaccines [8–

10]. These molecules are actively released from the parasite gut, excretory pores and surface

tegument. They include proteins, carbohydrates, lipids and RNAs that are likely to be critically

important for parasite survival in the mammalian host [11]. Characterization of these worm

components and their functions within the host could improve our understanding of parasite-

host interactions, and this could lead to the discovery of new strategies to combat these para-

sitic infections.

In vitro culture of adult flukes is the most common strategy to collect ESP and the implicit

assumption is that these products resemble the excretome and secretome of parasites in vivo.

However, verification of the worm integrity and viability during culture is a key step to avoid

contamination by components derived from dying parasites. Furthermore, parasites main-

tained in vitro face different environmental conditions than parasites in vivo. For example the

host’s immune system is not present in vitro. Therefore, the assumption that parasites release

the same ESPs in vitro and in vivo is likely to be incorrect. In the gerbil model, adult P. kellicotti
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flukes live individually or in small groups of two to four flukes in lung cysts. Analysis of fluid

from these cysts offer the unique opportunity to study ESPs in vivo [3].

The aims of this study were to study ESPs to improve understanding of parasite-host inter-

actions and to support the discovery of novel diagnostic or therapeutic targets. We used tan-

dem mass-spectrometry to characterize the secretome of adult P. kellicotti flukes and to

compare ESPs released during in vitro culture with parasite cyst fluid proteins (CFPs) which

correspond to ESPs released by adult flukes in vivo. We also compared these results to the

global proteome of soluble, somatic protein (SSP) extracts of whole adult flukes.

Materials and methods

Ethics statement

Mongolian gerbils (Meriones unguiculatus) aged 5 to 8 weeks old were purchased from Charles

River Laboratories (Worcester, MA, USA) and kept under specific pathogen free conditions in

an animal care facility of the Department of Comparative Medicine at Washington University

in St. Louis. (Missouri, USA). A protocol for the ethical use of animals in research was

approved by the university’s Institutional Animal Care and Use Committee (IACUC) (proto-

col ID 20–0503). Procedures involving animals were performed by specially trained personnel.

Sample collection and preparation

P. kellicotti metacercariae were isolated from the heart tissue of two naturally infected species

of crayfish (Orconectes luteus and Orconectes punctimanus) that were collected in Huzzah

Creek (Missouri, USA) as previously described [3]. A total of four or five metacercariae, in

150μL phosphate buffered saline (PBS), were inoculated into each gerbil by intraperitoneal

injection. Infected animals were sacrificed about 5 weeks post-infection, and necropsies were

performed. Lungs were examined for cysts and adult flukes. Adult flukes recovered from cysts

were washed three times for 5 min in warm sterile PBS and maintained in warm PBS until

they emptied their gut contents. After that, parasites were incubated at 37˚C, 5% CO2 in 500μL

of sterile culture medium (RPMI 1640 supplemented with 30mM HEPES pH 7.2, 2% glucose

and 10% penicillin/streptomycin/amphotericin mix; Sigma, St. Louis MO, USA). After 12hrs,

the supernatant containing the ESP was collected under laminar flow hood. The fluid was

syringe-filtered through a 0.22μm filter and store at -20˚C until use.

For SSP, adult parasites (collected as described below) were washed three times for 5 min in

warm and sterile PBS until they cleaned their gut content. Individual parasites were placed in a

1.5mL sterile tube containing PBS and mechanically crushed with a sterile plastic pestle under

a laminar flow hood. The samples were centrifuged at 20.000X g for 10 minutes at 4˚C and the

supernatant with extracted proteins was syringe-filtered through a 0.22μm filter and trans-

ferred into a clean 1.5mL tube and store at -20˚C until use.

Cyst fluid was collected by syringe aspiration of intact lung cysts from three different ger-

bils. The fluid was pooled and syringe-filtered through a 0.22μm filter and placed in a 1.5mL

sterile tube and store at -20˚C until use.

Protein digestion and sample preparation

Peptides were prepared as previously described using a modification of the filter-aided sample

preparation method [12]. Data were acquired as three technical replicates from single biologi-

cal preparations for ESP, SSP and CFP samples types. Three aliquots of 15 μg total protein

from each sample were mixed with 100 μl of 100 mM Tris-HCL buffer, pH 8.5 containing 8 M

urea (UA buffer) and 10 mM DTT and reduced at room temperature for an hour. The samples
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were transferred to the top chamber of a 10,000 MWCO cutoff filtration unit (MilliporeSigma,

Burlington MA, USA) and processed to peptides as previously described [12]. The peptides

were dried in a Savant DNA 120 Speedvac concentrator (Thermo Fisher Scientific, Waltham

MA, USA) for 15 min. The dried peptides were dissolved in 1% (vol/vol) TFA and desalted

using two micro-tips (porous graphite carbon, BIOMEKNT3CAR) (Glygen, Columbia MD,

USA) on a Biomek NX Beckman robot (Beckman Coulter, Brea CA, USA), as previously

described [13]. The peptides were eluted with 60 μl of 60% (vol/vol) MeCN in 0.1% (vol/vol)

TFA and dried in a Savant DNA 120 Speedvac concentrator (Thermo Scientific) after adding

TFA to 5% (vol/vol). The peptides were dissolved in 20 μl of 1% (vol/vol) MeCN in water. An

aliquot (10%) was removed for quantification using the Pierce Quantitative Fluorometric Pep-

tide Assay kit (Thermo Scientific). The remaining peptides were transferred to autosampler

vials (Sun-Sri,), dried and stored at -80˚C.

LC-MS/MS and data analysis

The peptides were separated using a nano-ELUTE chromatograph (Bruker Daltonics, Bremen,

Germany) interfaced to a timsTOF Pro mass spectrometer (Bruker Daltonics) with a modified

nano-electrospray source (Bruker Daltonics). The mass spectrometer was operated in Parallel

accumulation-serial fragmentation (PASEF) mode [14]. The samples in 2 μL of 1% (vol/vol)

FA were injected at a flow rate of 350 nL / min onto the column (75 μm i.d. × 25 cm Aurora

Series) with a CSI emitter (Ionopticks, Melbourne Victoria, Australia). The column tempera-

ture was set at 50˚C. The column was equilibrated using constant pressure (800 bar) with 8 col-

umn volumes of solvent A (0.1% (vol/vol) FA). Sample loading was performed at constant

pressure (800 bar) in 2 μL of Solvent A.

The peptides were eluted using the following gradient of Solvent B (0.1% (vol/vol) FA/

MeCN): solvent A containing 2% B was increased to 17% B over 60 min, to 25% B over 30

min, to 37% B over 10 min, to 80% B over 10 min and constant 80% B for 10 min. The MS1

and MS2 spectra were recorded from m/z 100 to 1700. Suitable precursor ions for PASEF-MS/

MS were selected from TIMS-MS survey scans by a PASEF scheduling algorithm [14]. A poly-

gon filter was applied to the m/z and ion mobility plane to select features most likely to be mul-

tiply charged peptide precursor ions. Quadrupole isolation width was set to 2 Th for m/

z< 700 and 3 Th for m/z> 700. The collision energy was ramped stepwise as a function of

increasing ion mobility: 52 eV for 0–19% of the ramp time; 47 eV from 19–38%; 42 eV from

38–57%; 37 eV from 57–76%; and 32 eV for the remainder. The TIMS elution voltage was cali-

brated linearly using the Agilent ESI-L Tuning Mix (m/z 622, 922, 1222).

Data from the mass spectrometer were converted to peak lists using DataAnalysis version

5.2 (Bruker Daltonics). The MS2 spectra with charges +2, +3 and +4 were analyzed using Mas-

cot software version 2.5.1 (Matrix Science, London, UK) [15]. Mascot was set up to search

against a custom parasite database (Paragonimus kellicotti, 12,850 entries) or host database

(Meriones unguiculatus, 38,763 entries) assuming the digestion enzyme was trypsin with a

maximum of 4 missed cleavages allowed [4,16]. The searches were performed with a fragment

ion mass tolerance of 50 ppm and a parent ion tolerance of 25 ppm. Carbamidomethylation of

cysteine was specified in Mascot as a fixed modification. Variable modifications included dea-

midation of asparagine and glutamine, pyro-glutamate formation from n-terminal glutamine,

oxidation of methionine and acetylation of protein n-terminus.

Scaffold version 5.0.1 (Proteome Software Inc., Portland OR, USA) was used to validate

MS/MS based peptide and protein identifications. Peptide identifications were accepted if they

could be established at greater than 58.0% probability to achieve an FDR less than 1.0% by the

Scaffold Local FDR algorithm. Protein identifications were accepted if they could be
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established at greater than 95.0% probability and contained at least 2 identified peptides. Pro-

tein probabilities were assigned by the Protein Prophet algorithm [17]. Proteins that contained

similar peptides and could not be differentiated based on MS/MS analysis alone were grouped

to satisfy the principles of parsimony. The mass spectrometry proteomics data were deposited

in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the

MassIVE partner repository with the dataset identifier MSV000089589.

Protein functional annotation, classification and visualization

In addition to annotation with the P. kellicotti and M. unguiculatus databases [4], proteins

were functionally classified using a software developed and provided by Dr. José. M. Ribeiro

[18]. The functionally annotated proteins for each dataset and sample were manually curated

and plotted on a hyperlinked Excel spreadsheet (S1 and S2 Tables) (Microsoft, Redmond WA,

USA). NSAF (Normalized Spectral Abundance Factor) values were used to determine the pro-

teins relative abundance. Mean NSAF values from at least two replicates were combined and

then divided by the total NSAF for the respective sample. NSAF values were recorded in an

Excel spreadsheet as a percentage of the total NSAF for respective samples, the results were

plotted on pie charts according to protein functional classes. Principal component analysis

(PCA) and scatter plot were conducted using GraphPad Prism version 9.1.3 for Windows

(GraphPad Software, San Diego CA, USA). Protein sequences were examined for the presence

of signal peptides using the program SignalP 6.0 (https://services.healthtech.dtu.dk/service.

php?SignalP).

Results and discussion

Proteomic profiles of P. kellicotti samples

A total of different 2,137 parasite-related proteins were identified and quantified using strin-

gent criteria� 2 peptides identified in at least 2 of the 3 replicate mass spectrometry runs from

each sample (Fig 1A). ESP, SSP and CFP samples types were technically replicated in order to

reduce the experimental noise of the results. Among these P. kellicotti proteins, 1,914 were

detected in the SSP samples, 942 in ESP samples and 37 in CFP samples. The Venn diagram in

Fig 1 shows that 29 P. kellicotti proteins were detected in all three sample types. Only 6 proteins

were found exclusively in the CFP sample. These included 2 heat shock proteins, 1 histone

H2A proteins and 2 proteins with unknown function (S1 Table). A principal component anal-

ysis (PCA) was applied to the protein expression data sets to show differences and similarities

between sample types after functional classification of proteins (Fig 2). This analysis reduces

the dimensionality of protein data sets to illustrate variation present in each data set [19]. This

study is the second proteomic study of P. kellicotti. A previous mass spectrometry study to

identify serodiagnostic targets by our group detected 2,555 predicted proteins in a single SSP

sample [5]. While both studies used similar mass spectrometry instruments, the present study

used an updated P. kellicotti database based on the recently published whole genome of P. kelli-
cotti [4] and higher stringency analysis methods (e,g., use of NSAF values for quantitation).

In silico analysis predicted that only 141 (6.6%) of the total 2,137 proteins were secreted via

a classical or non-classical pathway. These ESPs include 17 proteases, 16 metabolism related

proteins, four transporters and three protease inhibitors (S1 Table). Among these 141 proteins,

112 were found in the SSP sample type (5.9% of the proteins detected in the sample), 50 in ESP

sample type (5%) and only 1 CFP sample type (2.7%) (S1 Table). Proteins, including those that

lack a signal peptide, can be also secreted or excreted by the intestine, excretory pores, surface

cuticle/tegument shedding or release of extracellular vesicles (EV). The presence of EV may

explain the detection of proteins that are assumed to have intra-trematode functions [20]. It
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Fig 1. Venn diagrams representing the number of proteins found in each sample type, soluble somatic proteins (SSP),

excretory/secretory proteins (ESP), cyst fluid proteins (CFP). The overlap region between the circles shows proteins present in
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was shown that EV can be taken up by host cells, a process that indicates a role in the parasite’s

survival [21]. It was demonstrated that EVs differ in size, cargo and function depending on the

developmental stages of the trematodes [22,23].

A total of 2,053 host-related proteins were detected in the CFP sample type and the most

abundant proteins were plasma proteins and constitutive cell proteins (S3 Table). This is in

accordance with the cyst architecture of the parasites, which consists of dense collagenous con-

nective tissue and various inflammatory cells such as eosinophils. From the 128 host-derived

proteins detected between the SSP and ESP samples types (Figs 1B and 3 and S2 Table); 55 pro-

teins were shared between the three sample types and 7 and 16 host proteins were found exclu-

sively in each sample, respectively. Based on relative abundance, most of the host proteins

identified in the SSP and ESP samples type were blood or cytoskeletal proteins. Interestingly

we were not able to find the most abundant blood proteins in SSP or ESP as was found in the

CFP sample type (S3 Table). Thus, the presence of host-derived proteins in parasite secretions

may be due to a recycling system and not due to contamination during sample collection. As it

was described before, parasites were washed extensively and had no microscopically visible gut

content before culture. Therefore, the only way to detect host proteins in the samples is if the

parasites actively secrete them. For example in F. hepatica proteins of the host’s blood were

found as part of the parasite EV content and in soft ticks as part of the salivary gland proteome

[20,24,25]. Host proteins have been demonstrated in the Schistosoma tegument, and they may

help the parasite to evade immune recognition [26].

two or more stages. In parenthesis is the total protein number for the sample. A. Comparison of P. kellicotti-derived proteins by

sample type B. Comparison of M. unguiculatus (host)-derived proteins by sample type.

https://doi.org/10.1371/journal.pntd.0010679.g001

Fig 2. Principal component analysis. The PCA plot represents 2,137 parasite-related proteins with biological replicates that

indicated distinct proteomics profile differences between soluble somatic proteins (SSP), excretory/secretory proteins (ESP),

cyst fluid proteins (CFP) samples types represented with yellow, purple and pink dots, respectively.

https://doi.org/10.1371/journal.pntd.0010679.g002
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The somatic and secreted proteome of P. kellicotti
The most abundant functional categories in the SSP sample type were storage (15%), oxidant

metabolism (15%) and protease inhibitors (9%) (Fig 4A). In contrast, the most abundant

Fig 3. Functional annotation of M. unguiculatus-derived proteins found in P. kellicotti samples. Pie chart

representing the percentage of proteins found in each sample with respect to NSAF values. A. soluble somatic proteins

(SSP) sample type B. excretory/secretory proteins (ESP) sample type.

https://doi.org/10.1371/journal.pntd.0010679.g003
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categories in the ESP sample type were metabolism related proteins (oxidation, carbohydrates

and lipids, 12%, 9% and 6% respectively) and signal transduction (Fig 4B). The most abundant

proteins identified in the SSP sample type were two glutathione S-transferases (GSTs), fatty

acid-binding protein, calcium-binding protein and actin. This list overlapped significantly

with the most abundant proteins in the ESP sample type (GSTs, ferritin, fatty acid-binding

protein and two unknown proteins, see S1 Table).

GSTs are a versatile protein superfamily involved in cellular detoxification by either catalyz-

ing toxin conjugation with glutathione (GSH) or passively binding to a wide range of endoge-

nous/exogenous toxic molecules [27]. In parasites, GSTs participate in detoxifying exogenous

toxins and protect the parasite from reactive oxidant damage as aldehyde products of lipid per-

oxidation in trematodes can be metabolized through glutathione conjugation [28]. Due to

their important role in parasite-host interactions, GSTs have been targeted for pharmaceutical

and vaccine purposes and have demonstrated protective effects against some parasites [29].

Fatty acid binding proteins (FABPs) are immunogenic proteins that play important roles in

nutrient acquisition and parasite survival within the mammalian host. However as this family

of proteins is often present in ESP, it may also have anti-inflammatory functions. For instance,

a FABP secreted by F. hepatica induced human peripheral blood mononuclear cells (PBMCs)

to express arginase, CHI3L1 and activated macrophages to release anti-inflammatory cyto-

kines [30]. In addition, this FABP has been shown to downregulate production of nitric oxide

and the expression of nitric oxide synthase. Several heat shock proteins (HSPs) were found in

the SSP and ESP samples (17 and 8 proteins, respectively). HSPs are often detected in parasite

ESPs, and they are major target of host immune responses [31]. HSPs function as proteins

chaperones and they are believed to be important for stress resistance, parasite viability, infec-

tivity and virulence [32].

Protease inhibitors play crucial roles in parasite development and survival; they are believed

to counteract potentially damaging immune attack of vertebrate hosts. Many digenean trema-

todes rely on proteases to invade host tissues, and they also contribute to nutrition and devel-

opment. We found 63 proteases in the SSP and 43 in the ESP sample with cysteine proteases as

the most abundant subcategory. Several cysteine proteases were also found in P. westermani
ESP, and some of them were recognized by antibodies in host serum samples [6]. Although we

did not find many protease inhibitors (3%) in the P. kellicotti ESP samples, it is interesting that

a cystatin was one of the most abundant proteins overall in the sample. Parasite cystatins not

only participate in normal physiological processes, but they are also actively involved in host–

parasite interactions including immune evasion [33]. The P. kellicotti cystatins share high

sequence similarity with orthologs found in S. japonicum that are expressed in the gut and teg-

ument of the adult parasite and inhibits the proteolytic activity of papain [34].

The study of the SSP and ESP can provide important clues to improve the serodiagnosis of

parasitic diseases. For example, Sadaow and coworkers developed an immunochromato-

graphic test for opisthorchiasis and clonorchiasis diagnosis using ESP [35]. The test used solu-

ble ESP from adult worms cultured in vitro as the immobilized antigen. However, the

preparation of ESP is time consuming and expensive, and it relies on the availability of adult

parasites. In addition, ESP samples are difficult to standardize for use in serodiagnostic tests

[36].

Fig 4. Functional annotation of P. kellicotti-derived proteins. Pie chart representing the percentage of proteins

found in each sample type with respect to NSAF values. A. somatic soluble proteins (SSP) sample type B. excretory/

secretory proteins (ESP) sample type C. cyst fluid proteins (CFP) sample type.

https://doi.org/10.1371/journal.pntd.0010679.g004
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Similarities and differences between proteins in ESP and CFP

The analysis of parasite ESP released in vitro provides a window into parasite-host interactions.

However, ESP may also provide false signals. The presence of intracellular proteins or apopto-

tic factors in ESP suggest that some proteins detected are due to nonspecific leakage of intra-

cellular proteins into the culture medium caused by cellular damage of the parasite [37]. In
vitro culture conditions are different from those in vivo in mammalian hosts. Potential differ-

ences including pH, lack of exposure to the host’s immune system, nutrients, and host-regu-

lated parasite density may account for some differences between in vitro in vivo ESPs. We

identified 37 parasite-related proteins in CFP samples that could be divided in 11 functional

categories (Table 1). The largest group consist of proteins with unknown function (without

and with conserved domains, 31%), cytoskeletal proteins (16%) and proteasome machinery

(12%) (Figs 1 and 4C). From these 37 proteins, 29 are shared among the three samples (Fig 4

and Table 1).

Turning to parasite proteins shared by ESP and CSP, the most abundant of these pro-

teins were peroxiredoxin-2, two cathepsins L, four Ras-related proteins and two T-com-

plex protein 1 subunit. Peroxiredoxin are proteins able to play multiple physiological roles

that include thiol-dependent peroxidase [38], chaperone holdase [39,40], regulator of

H2O2, and modulator of the immune response [41,42]. Gene knock-out and RNA interfer-

ence studies demonstrated that this protein plays a crucial role in survival and virulence,

but there is evidences that its main physiological role may not be the same in different par-

asite species [43–45]. Parasite survival relies on an effective defense against oxidative dam-

age due to reactive oxygen and nitrogen species produced by the host immune system. It

was also demonstrated that peroxiredoxins could activate macrophages and play a key role

in promoting parasite induced Th2 type immunity while suppressing a pro-inflammatory

Th1 response. In parasitic trematodes, peroxiredoxins secreted in ESP inactivate reactive

oxygen species, and act as pathogen-associated molecular pattern molecules (PAMPs)

where they alternatively activate macrophages, using a mechanism that is independent of

antioxidant function an suppress Th1 [41,46]. Cathepsin L is a cysteine protease related to

papain. Although one of the two cathepsins found in these parasite-related shared proteins

was annotated as a cathepsin F, after manually curated the database they were both reclas-

sified as cathepsin L. The alignment with several well-known cathepsins L (S1 Fig) shows

that they both have the ERFNIN, GNFD and GCNGG motifs (identified with an � on S1

Fig) characteristic of the cathepsin L. This enzyme plays several essential roles in parasite

survival and host-parasite interactions. They participate in nutrient acquisition and they

are part of the secretome of several parasites [47–49]. Cathepsin L have several functions

such as nutrient acquisition by the digestion of host proteins, cleavage of the host extracel-

lular matrix allowing parasite migration, and the impairment of the host immunity by

destroying immunoglobulin and suppressing the Th1 immune response. One of the

cathepsin (accession number KAF6769383.1) shares 70% sequence similarity with cathep-

sin Ls from P. westermani and P. pseudoheterotremus detected in adult SSP and ESP sam-

ples and is specifically expressed in the adult parasite digestive system [50]. They also

demonstrate that this protein is highly sensitive and specific for serodiagnosis of human

paragonimiasis, but no studies of species specificity or cross-reactivity have been per-

formed. In Fasciola gigantica, cathepsin L was used as an antigen to develop a rapid diag-

nostic test for human Fasciola infection that was highly sensitive [51]. In the parasite-

related shared proteins, four Ras-related proteins were found. Ras-related protein Rab-

11B, Ras-related protein Rab-7a, Ras-related protein Rab-8B and Ras-related protein Rap-

1b. These proteins belong to the small GTP-binding proteins family, part of the Ras
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superfamily, which regulate intracellular membrane trafficking of several parasites [52–

54]. In F. hepatica was demonstrated that Ras proteins interacts with host immune system

mediators and promotes monocytes phagocytosis and inhibits cell proliferation [52]. If

most Ras-related proteins have a similar function when secreted, it may help explain how

endoparasites recognize host immune cells and evade them to survive.

Table 1. Proteins found in the CFP sample type. In the first row are the accession numbers of each of the 37 parasite-derived proteins found in the CFP sample type.

Presence of these proteins in the somatic soluble proteins (SSP) sample type and excretory/secretory proteins (ESP) sample type are marked with an asterisk. The GenBank

accession number of the top blast hit and it similarity to the match is given in parenthesis. The proteins are ordered from the most to the least abundant in the CFP sample

type.

CFP SAMPLE SSP SAMPLE ESP SAMPLE DESCRIPTION TOP BLAST HIT (ACCESSION NUMBER, %)

KAF6774313.1 � � Actin, alpha skeletal muscle Zea mays (PWZ52530.1, 74)

KAF6775699.1 Unknown product Heterocephalus glaber (EHB12217.1, 100)

KAF6779974.1 � � Heat shock protein 70 Paragonimus skrjabini miyazakii (KAF7255280.1, 96.2)

KAF6775055.1 � � Actin-1/4 Schistosoma mansoni (XP_018655545.1, 86.9)

KAF6772180.1 � � Polyubiquitin Ancylostoma duodenale (KIH51178.1, 100)

KAF6778982.1 heat shock 70 kDa protein cognate 4 Paragonimus westermani (KAA3679877.1, 78.9)

KAF6774896.1 � � Transforming protein RhoA Paragonimus heterotremus (KAF5401362.1, 97.4)

KAF6775247.1 heat shock protein 83-like Paragonimus westermani (KAA3670344.1, 94)

KAF6779118.1 � � Elongation factor 2 Paragonimus heterotremus (KAF5400778.1, 95.2)

KAF6775581.1 Histone H2A Paragonimus westermani (KAA3673838.1, 100)

KAF6776868.1 � � Ras-related protein Rab-7a Paragonimus westermani (KAF8567099.1, 93.1)

KAF6780400.1 � � Calmodulin Corapipo altera (XP_027493610.1, 98)

KAF6775589.1 Unknown product Opisthorchis viverrini (XP_009166091.1, 100)

KAF6768442.1 � � ADP-ribosylation factor 1-like 2 Paragonimus heterotremus (KAF5397224.1, 86.7)

KAF6777412.1 � � Cathepsin F Paragonimus westermani (KAA3681708.1, 55.7)

KAF6772630.1 � � Tubulin beta-4B chain Paragonimus skrjabini miyazakii (KAF7258287.1, 100)

KAF6776640.1 � � Transitional endoplasmic reticulum ATPase Paragonimus skrjabini miyazakii (KAF7256594.1, 99)

KAF6778533.1 � � Elongation factor 1-alpha Paragonimus skrjabini miyazakii (KAF7255212.1, 94.7)

KAF6768429.1 � � Peroxiredoxin-2 Paragonimus heterotremus (KAF5399371.1, 96.3)

KAF6777236.1 � � Phosphoglycerate kinase Paragonimus skrjabini miyazakii (KAF7232440.1, 97.3)

KAF6776126.1 � � Ras-related protein Rab-11B Paragonimus heterotremus (KAF5402724.1, 97.2)

KAF6776993.1 � � Alpha-tubulin Chelonia mydas (EMP31245.1, 85.6)

KAF6780477.1 � � Ras-related protein Rap-1b Paragonimus westermani (KAA3675448.1, 99.4)

KAF6780429.1 � � Ras-related protein Rab-8B Paragonimus skrjabini miyazakii (KAF7250710.1, 99.5)

KAF6771111.1 � � V-type proton ATPase subunit B Paragonimus heterotremus (KAF5398304.1, 97.5)

KAF6769383.1 � � CPB2 protein Paragonimus pseudoheterotremus (AOH96646.1, 76.8)

KAF6779350.1 � � T-complex protein 1 subunit delta Paragonimus heterotremus (KAF5400171.1, 99)

KAF6767940.1 � 26S protease regulatory subunit 6B Paragonimus westermani (KAA3677812.1, 100%)

KAF6779213.1 � Spliceosome RNA helicase DDX39B Paragonimus westermani (KAF8571704.1, 97.2)

KAF6770190.1 � � Tubulin beta-2A chain Macrostomum lignano (PAA56989.1, 83.5)

KAF6778686.1 � � GTP-binding nuclear protein Paragonimus heterotremus (KAF5399634.1, 77.7)

KAF6768213.1 AP complex subunit beta Paragonimus skrjabini miyazakii (KAF7262109.1, 99.8)

KAF6780438.1 � � ATP synthase subunit alpha Paragonimus skrjabini miyazakii (KAF7259739.1, 98.8)

KAF6780309.1 � � T-complex protein 1 subunit eta Paragonimus westermani (KAA3675424.1, 98.3)

KAF6779441.1 � � Clathrin heavy chain Paragonimus westermani (KAF8567126.1, 97.7)

KAF6774619.1 � � Sodium/potassium-transporting ATPase subunit alpha Paragonimus skrjabini miyazakii (KAF7262433.1, 99.5)

KAF6779958.1 � � Spectrin beta chain Paragonimus heterotremus (KAF5397619.1, 99.3)

https://doi.org/10.1371/journal.pntd.0010679.t001
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Concluding remarks

To our knowledge, this is the first study that has compared in vitro and in vivo ESP for any

Paragonimus species. Although analysis of ESPs produced in vitro can be helpful, in vitro cul-

ture does not reproduce the true biological and chemical conditions faced by the parasite

inside the human host. Moreover, is well known that parasite secretomes undergo substantial

changes in composition during their life cycle due to adaptation to different environments.

Regarding the difference in the protein number between the ESP and CFP it is important to

take into account that some proteins can be released into the cyst but diffuse from there to

other host tissues. Therefore, the opportunity to analyze fluid from cysts that contained flukes

allowed us to compare proteins secreted in vivo with proteins were found in culture medium

after in vitro culture. Our results provide new insights into host-parasite interactions for an

important food-borne parasitic trematode at the molecular level. Parasite proteins present in

cyst fluid may also have practical value, because they could lead to new treatments or improved

diagnostic tests for paragonimiasis.
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