615 research outputs found

    Mendelian randomization and type 2 diabetes

    Get PDF
    Type 2 diabetes (T2DM) is a common, complex disease that poses a substantial burden on individual and population health, but we have relatively limited understanding of its underlying pathophysiology. Observational studies have highlighted large numbers of risk factors for T2DM, some of which are modifiable through behavioural or pharmacological intervention. Determining which of these risk factors plays a causal role in the development of T2DM has been a challenge, but Mendelian randomisation (MR) studies are harnessing genetic data in population studies to offer new insights. Using evolving analytical methods, MR studies continue to address questions of causality related to T2DM, including exploring the roles of adiposity, blood lipids and inflammation. The causal roles of a number of important modifiable risk factors have been confirmed by MR studies, while the relevance of others has been called into question. As more MR studies are conducted, methods are developed and refined in order to make the most efficient and reliable use of available genetic and phenotypic data. In this review, the design and findings of some important MR studies related to T2DM are explored and their relevance for translation to clinical practice considered

    Discovering and validating disease subtypes for heart failure using unsupervised machine learning methods

    Get PDF
    Notable heterogeneity exists in the clinical presentation of heart failure (HF) patients. Current subtype classifications are based on ejection fraction may not fully capture the aetiological and prognostic heterogeneity of HF. The use of unsupervised machine learning (ML) approaches, such as cluster analysis, on large-scale observational data from electronic health records (EHR), can enable the discovery of novel subtypes and guide the characterization of their clinical manifestation. Clustering methods can group HF patients based on similarities between their clinical features without making a priori assumptions about the distribution of the data. We sought to discover, characterize and replicate HF subtypes by applying a clustering method on a heterogeneous HF population derived from phenotypically rich EHR. Characterization of HF subtypes using EHR derived variable may enable more precise large-scale genomic analysis to inform better prevention, diagnostic and treatment strategies

    Effect of atorvastatin on glycaemia progression in patients with diabetes:an analysis from the Collaborative Atorvastatin in Diabetes Trial (CARDS)

    Get PDF
    AIMS/HYPOTHESIS: In an individual-level analysis we examined the effect of atorvastatin on glycaemia progression in type 2 diabetes and whether glycaemia effects reduce the prevention of cardiovascular disease (CVD) with atorvastatin. METHODS: The study population comprised 2,739 people taking part in the Collaborative Atorvastatin Diabetes Study (CARDS) who were randomised to receive atorvastatin 10 mg or placebo and who had post-randomisation HbA(1c) data. This secondary analysis used Cox regression to estimate the effect of atorvastatin on glycaemia progression, defined as an increase in HbA(1c) of ≥0.5% (5.5 mmol/mol) or intensification of diabetes therapy. Mixed models were used to estimate the effect of atorvastatin on HbA(1c) as a continuous endpoint. RESULTS: Glycaemia progression occurred in 73.6% of participants allocated placebo and 78.1% of those allocated atorvastatin (HR 1.18 [95% CI 1.08, 1.29], p < 0.001) by the end of follow-up. The HR was 1.22 (95% CI 1.19, 1.35) in men and 1.11 (95% CI 0.95, 1.29) in women (p = 0.098 for the sex interaction). A similar effect was seen in on-treatment analyses: HR 1.20 (95% CI 1.07, 1.35), p = 0.001. The net mean treatment effect on HbA(1c) was 0.14% (95% CI 0.08, 0.21) (1.5 mmol/mol). The effect did not increase through time. Diabetes treatment intensification alone did not differ with statin allocation. Neither baseline nor 1-year-attained HbA(1c) predicted subsequent CVD, and the atorvastatin effect on CVD did not vary by HbA(1c) change (interaction p value 0.229). CONCLUSIONS/INTERPRETATION: The effect of atorvastatin 10 mg on glycaemia progression among those with diabetes is statistically significant but very small, is not significantly different between sexes, does not increase with duration of statin and does not have an impact on the magnitude of CVD risk reduction with atorvastatin. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-015-3802-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users

    A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease.

    Get PDF
    Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics

    Genetic risk factors and Mendelian randomization in cardiovascular disease

    Get PDF
    Cardiovascular disease encompasses several diverse pathological states that place a heavy burden on individual and population health. The aetiological basis of many cardiovascular disorders is not fully understood. Growing knowledge of the genetic architecture underlying coronary heart disease, stroke, cardiac arrhythmias and peripheral vascular disease has confirmed some suspected causal pathways in these conditions but also uncovered many previously unknown mechanisms. Here, we consider the contribution of genetics to the understanding of cardiovascular disease risk. We evaluate the utility and relevance of findings from genome-wide association studies and explore the role that Mendelian randomisation has to play in exploiting these. Mendelian randomisation permits robust causal inference in an area of research where this has been hampered by bias and confounding in observational studies. In doing so, it provides evidence for causal processes in cardiovascular disease that could represent novel targets for much-needed new drugs for disease prevention and treatment

    Replication and Characterization of Association between ABO SNPs and Red Blood Cell Traits by Meta-Analysis in Europeans.

    Get PDF
    Red blood cell (RBC) traits are routinely measured in clinical practice as important markers of health. Deviations from the physiological ranges are usually a sign of disease, although variation between healthy individuals also occurs, at least partly due to genetic factors. Recent large scale genetic studies identified loci associated with one or more of these traits; further characterization of known loci and identification of new loci is necessary to better understand their role in health and disease and to identify potential molecular mechanisms. We performed meta-analysis of Metabochip association results for six RBC traits-hemoglobin concentration (Hb), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV) and red blood cell count (RCC)-in 11 093 Europeans from seven studies of the UCL-LSHTM-Edinburgh-Bristol (UCLEB) Consortium. We identified 394 non-overlapping SNPs in five loci at genome-wide significance: 6p22.1-6p21.33 (with HFE among others), 6q23.2 (with HBS1L among others), 6q23.3 (contains no genes), 9q34.3 (only ABO gene) and 22q13.1 (with TMPRSS6 among others), replicating previous findings of association with RBC traits at these loci and extending them by imputation to 1000 Genomes. We further characterized associations between ABO SNPs and three traits: hemoglobin, hematocrit and red blood cell count, replicating them in an independent cohort. Conditional analyses indicated the independent association of each of these traits with ABO SNPs and a role for blood group O in mediating the association. The 15 most significant RBC-associated ABO SNPs were also associated with five cardiometabolic traits, with discordance in the direction of effect between groups of traits, suggesting that ABO may act through more than one mechanism to influence cardiometabolic risk.British Heart Foundation (Grant ID: RG/10/12/28456, RG/08/013/25942, RG/13/16/30528, RG/98002, RG/07/008/23674); Medical Research Council (Grant ID: G0000934, G0500877, MC_UU_12019/1, K013351); Wellcome Trust (Grant ID: 068545/Z/02, 097451/Z/11/Z); European Commission Framework Programme 6 (Grant ID: 018996); French Ministry of Research; Department of Health Policy Research Programme (England); Chief Scientist Office of Scotland (Grant ID: CZB/4/672, CZQ/1/38); National Institute on Ageing (NIA) (Grant ID: AG1764406S1, 5RO1AG13196); Pfizer plc (Unrestricted Investigator Led Grant); Diabetes UK (Clinical Research Fellowship 10/0003985); Stroke Association; National Heart Lung and Blood Institute (5RO1HL036310); Agency for Health Care Policy Research (HS06516); John D. and Catherine T. MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health; Swiss National Science Foundation (33CSCO-122661); GlaxoSmithKline. Faculty of Biology and Medicine of Lausanne,Switzerland.This is the final version of the article. It first appeared from Public Library of Science (PLOS) via http://dx.doi.org/10.1371/journal.pone.015691

    Efficacy and Safety of Alirocumab in Individuals with Diabetes Mellitus:Pooled Analyses from Five Placebo-Controlled Phase 3 Studies

    Get PDF
    Introduction: Diabetes mellitus (DM) carries an elevated risk for cardiovascular disease. Here, we assessed alirocumab efficacy and safety in people with/without DM from five placebo-controlled phase 3 studies. Methods: Data from up to 78 weeks were analyzed in individuals on maximally tolerated background statin. In three studies, alirocumab 75 mg every 2 weeks (Q2W) was increased to 150 mg Q2W at week 12 if week 8 low-density lipoprotein cholesterol (LDL-C) was ≥ 70 mg/dL; two studies used alirocumab 150 mg Q2W throughout. The primary endpoint was percentage change in LDL-C from baseline to week 24. Results: In the alirocumab 150 mg pool (n = 2416), baseline LDL-C levels were 117.4 mg/dL (DM) and 130.6 mg/dL (without DM), and in the 75/150 mg pool (n = 1043) 112.8 mg/dL (DM) and 133.0 mg/dL (without DM). In the 150 mg Q2W group, week 24 LDL-C reductions from baseline were observed in persons with DM (− 59.9%; placebo, − 1.4%) and without DM (− 60.6%; placebo, + 1.5%); 77.7% (DM) and 76.8% (without DM) of subjects achieved LDL-C < 70 mg/dL. In the alirocumab 75/150 mg group, 26% (DM) and 36% (without DM) of subjects received dose increase. In this group, week 24 LDL-C levels changed from baseline by − 43.8% (DM; placebo, + 0.3%) and − 49.7% (without DM; placebo, + 5.1%); LDL-C < 70 mg/dL was achieved by 68.3% and 65.8% of individuals, respectively. At week 24, alirocumab was also associated with improved levels of other lipids. Adverse event rates were generally comparable in all groups (79.8–82.0%). Conclusions: Regardless of DM status, alirocumab significantly reduced LDL-C levels; safety was generally similar. Funding Sanofi and Regeneron Pharmaceuticals, Inc. Plain Language Summary Plain language summary available for this article. Electronic supplementary material The online version of this article (10.1007/s13300-018-0439-8) contains supplementary material, which is available to authorized users

    Memantine increases NMDA receptor level in the prefrontal cortex but fails to reverse apomorphine-induced conditioned place preference in rats

    Get PDF
    Studies have shown that inflammation and neurodegeneration may accompany the development of addiction to apomorphine and that the glutamate NMDA receptor antagonist, memantine, may be neuroprotective. The similarity between apomorphine and dopamine with regard to their chemical, pharmacological and toxicological properties provided a basis for investigating the mechanism of action of the former agent. In this study, we investigated whether memantine would suppress apomorphine-seeking behavior in rats subjected to apomorphine-induced place preference conditioning, through modulation of NMDA receptors in the prefrontal cortex. Repeated apomorphine (1 mg/kg) treatment induced conditioned place preference (CPP) and had no significant effect on NMDA receptor levels in the prefrontal cortex. Prior treatment with memantine (5 mg/kg or 10 mg/kg) increased the levels of NMDA receptors in the prefrontal cortex but did not suppress CPP induced by apomorphine. These data give further support to the addictive effect of apomorphine and demonstrate that blockade of NMDA receptors by memantine is unable to suppress apomorphine-seeking behavior

    Mendelian randomization for studying the effects of perturbing drug targets [version 1; peer review: awaiting peer review]

    Get PDF
    Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF
    corecore