19 research outputs found

    Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil

    Get PDF
    Molibility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from oils to surface waters. To study the sorption an mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agircultural Humic Hapludult was investigated and a kinetic model applicable in field-scale model tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrtions (0-4.7 mmol L-1). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L-1, the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium". The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics

    Dataset for "Energy dissipation in the inner surf zone: new insights from LiDAR-based roller geometry measurements"

    No full text
    This dataset includes the LiDAR surface elevation measurements from which wave and surface roller properties were extracted following the methodology described in the article "Energy dissipation in the inner surf zone: new insights from LiDAR-based roller geometry measurements", submitted to Journal of Geophysical Research: Oceans. The complete wave and roller dataset is provided along with all the data used to produce the Figures of the article
    corecore