19 research outputs found
Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil
Molibility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from oils to surface waters. To study the sorption an mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agircultural Humic Hapludult was investigated and a kinetic model applicable in field-scale model tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrtions (0-4.7 mmol L-1). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L-1, the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium". The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics
An investigation of dispersion characteristics in shallow coastal waters
Hydrodynamic dispersion has a significant impact on the mass transport of sediments and contaminants within coastal waters. In this study apparent horizontal dispersion in a tidally-dominated shallow estuary was investigated using field observations and a numerical model. A cluster of four Lagrangian drifters was released in two shallow regions inside Moreton Bay, Australia: between two small islands and in an open water area. During a 16-h tracking period, the drifters generally showed similar behaviour, initially moving with the dominant current and remaining together before spreading apart at the change of tide. Two dispersion regimes were identified, a slow dispersion during the earlier stage and a rapid dispersion during the latter stage of deployment. Such change in regime typically occurred during the succeeding ebb or flow tides, which may be attributable to residual eddies breaking down during reversal of tidal direction. In addition, a power function of the squared separation distance over the apparent dispersion coefficient produced an R2 exceeding 0.7, indicating a significant relationship between them.
By applying a three-dimensional hydrodynamic model, the trajectories of artificial particles spreading in the bay were simulated, which allowed the calculation of dispersion coefficients throughout the entire bay. The study results demonstrate that the tidal effects on dispersion were dependent on the effect of tidal excursion and residual current. The tide was found to be the most dominant driver of dispersion in the bay when unobstructed by land; however, bathymetric and shoreline characteristics were also significant localised drivers of dispersion between the two islands as a result of island wake.Griffith Sciences, Griffith School of EngineeringNo Full Tex