34 research outputs found
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
Aims The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence
About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches
Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial
Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
The Three Books on interes-bearing loans and interest (Foenus et Usurae) by Gerard Noodt, Jurist and Professor of Law
The Three Books on interes-bearing loans and interest (Foenus et Usurae) by Gerard Noodt, Jurist and Professor of Law by SJ van Niekerk, JT Pretorius, DM Kriel and DH van Zyl 2009 ISBN: 978-0-9814124-0-5 Pages: 391 Print version: Available Electronic version: Free PDF availabl
Synthesis, characterization, electrospinning and antibacterial studies on triphenylphosphine-dithiphosphonates Copper(I) and Silver(I) complexes
BACKGROUND: The novel amido and O-ferrocenyldithiophosphonates [FcP(S)(SH)(NHR(1))] (Fc = Fe(η(5)-C(5)H(5))(η(5)-C(5)H(4)), R(1) = 1-(4-fluorophenylethyl and benzyloxycyclopentyl) and [FcP(S)(OR(2))S(−)][H(3)N(+)C(CH(3))(3)] (R(2) = myrtanyl) were synthesized by the reaction of [(FcPS(2))](2) (Fc = Fe(η(5)-C(5)H(5))(η(5)-C(5)H(4))) and chiral amines, such as (S)–(−)-1-(4-fluorophenylethyl) amine and (1S,2S)-(+)-benzyloxycyclopentyl amine, and of (1S), (2S), (5S)-myrtanol in toluene. The reaction of ferrocenyldithiophosphonates and [Cu(PPh(3))(2)]NO(3) or AgNO(3) and PPh(3) gave rise to copper(I) and silver(I) complexes in THF. [Ag(2){FcP(OMe)S(2)}(2)(PPh(3))(2)] and [Cu(PPh(3))(2)]NO(3) were embedded into nanofibers and their antimicrobial activities on fibers were also investigated. RESULTS: The compounds have been characterized by elemental analyses, IR, NMR ((1)H-, (31)P-) spectroscopy as well as MS measurements. Nanofibers were obtained by electrospinning method which is the simplest and most effective method to produce nanoscale fibers under strong electrical field. Antimicrobial activity of the compound 5, [Ag(2){FcP(OMe)S(2)}(2)(PPh(3))(2)], and [Cu(PPh(3))(2)]NO(3) on fibers were studied. CONCLUSIONS: In this study, the new dithiophosphonate ligands were synthesized and utilized in the preparation of copper(I) and silver(I) complexes with ferrocenyldithiophosphonate and triphenylphosphine. Then, the compounds [Ag(2){FcP(OMe)S(2)}(2)(PPh(3))(2)] and [Cu(PPh(3))(2)]NO(3) were added into the PAN solutions (Co-PAN dissolved in dimethylacetamide) and the solutions were electrospun onto microscope slides and PP meltblown surfaces. Antimicrobial activity of the compounds [Ag(2){FcP(OMe)S(2)}(2)(PPh(3))(2)] and [Cu(PPh(3))(2)]NO(3) on fibers were determined in vitro against two indicator strains; M. luteus NCIB and E. coli ATCC25922. The obtained results indicated that these metals showed moderate level antimicrobial activities