2,961 research outputs found

    Functional renormalization group with a compactly supported smooth regulator function

    Full text link
    The functional renormalization group equation with a compactly supported smooth (CSS) regulator function is considered. It is demonstrated that in an appropriate limit the CSS regulator recovers the optimized one and it has derivatives of all orders. The more generalized form of the CSS regulator is shown to reduce to all major type of regulator functions (exponential, power-law) in appropriate limits. The CSS regulator function is tested by studying the critical behavior of the bosonized two-dimensional quantum electrodynamics in the local potential approximation and the sine-Gordon scalar theory for d<2 dimensions beyond the local potential approximation. It is shown that a similar smoothing problem in nuclear physics has already been solved by introducing the so called Salamon-Vertse potential which can be related to the CSS regulator.Comment: JHEP style, 11 pages, 2 figures, proofs corrected, accepted for publication by JHE

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems

    Validation of a contemporary prostate cancer grading system using prostate cancer death as outcome

    Get PDF
    BACKGROUND: Gleason scoring (GS) has major deficiencies and a novel system of five grade groups (GS⩽6; 3+4; 4+3; 8; ⩾9) has been recently agreed and included in the WHO 2016 classification. Although verified in radical prostatectomies using PSA relapse for outcome, it has not been validated using prostate cancer death as an outcome in biopsy series. There is debate whether an ‘overall' or ‘worst' GS in biopsies series should be used. METHODS: Nine hundred and eighty-eight prostate cancer biopsy cases were identified between 1990 and 2003, and treated conservatively. Diagnosis and grade was assigned to each core as well as an overall grade. Follow-up for prostate cancer death was until 31 December 2012. A log-rank test assessed univariable differences between the five grade groups based on overall and worst grade seen, and using univariable and multivariable Cox proportional hazards. Regression was used to quantify differences in outcome. RESULTS: Using both ‘worst' and ‘overall' GS yielded highly significant results on univariate and multivariate analysis with overall GS slightly but insignificantly outperforming worst GS. There was a strong correlation with the five grade groups and prostate cancer death. CONCLUSIONS: This is the largest conservatively treated prostate cancer cohort with long-term follow-up and contemporary assessment of grade. It validates the formation of five grade groups and suggests that the ‘worst' grade is a valid prognostic measure

    Experimental demonstration of quantum memory for light

    Full text link
    The information carrier of today's communications, a weak pulse of light, is an intrinsically quantum object. As a consequence, complete information about the pulse cannot, even in principle, be perfectly recorded in a classical memory. In the field of quantum information this has led to a long standing challenge: how to achieve a high-fidelity transfer of an independently prepared quantum state of light onto the atomic quantum state? Here we propose and experimentally demonstrate a protocol for such quantum memory based on atomic ensembles. We demonstrate for the first time a recording of an externally provided quantum state of light onto the atomic quantum memory with a fidelity up to 70%, significantly higher than that for the classical recording. Quantum storage of light is achieved in three steps: an interaction of light with atoms, the subsequent measurement on the transmitted light, and the feedback onto the atoms conditioned on the measurement result. Density of recorded states 33% higher than that for the best classical recording of light on atoms is achieved. A quantum memory lifetime of up to 4 msec is demonstrated.Comment: 22 pages (double line spacing) incl. supplementary information, 4 figures, accepted for publication in Natur

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    An integrated atom-photon junction

    Full text link
    Photonic chips that integrate guides, switches, gratings and other components, process vast amounts of information rapidly on a single device. A new branch of this technology becomes possible if the light is coupled to cold atoms in a junction of small enough cross section, so that small numbers of photons interact appreciably with the atoms. Cold atoms are among the most sensitive of metrological tools and their quantum nature also provides a basis for new information processing methods. Here we demonstrate a photonic chip which provides multiple microscopic junctions between atoms and photons. We use the absorption of light at a junction to reveal the presence of one atom on average. Conversely, we use the atoms to probe the intensity and polarisation of the light. Our device paves the way for a new type of chip with interconnected circuits of atoms and photons.Comment: 5 pages, 4 figure. Submitted to Nature Photonic

    Long-distance quantum communication with atomic ensembles and linear optics

    Get PDF
    Quantum communication holds a promise for absolutely secure transmission of secret messages and faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for physical implementation of quantum communication. However, due to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. We describe a scheme that allows to implement robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and therefore well fits the status of the current experimental technology. We show that the communication efficiency scale polynomially with the channel length thereby facilitating scalability to very long distances.Comment: 2 tex files (Main text + Supplement), 4 figure

    Orodispersible tablets: therapeutic and technological advantages of development

    Get PDF
    Los comprimidos bucodispersables se definen como comprimidos no recubiertos destinados a ser colocados en la boca, donde se dispersan rápidamente antes de ser tragados. Estas formulaciones son conocidas por las siglas FDDT´s (Fast Dissolving Disintegrating Tablets). Son útiles para la administración a pacientes con dificultades en la deglución, presentan una elevada aceptación por parte del paciente, mejoran de la biodisponibilidad del principio activo y suponen una nueva alternativa para la industria farmacéutica. Dentro de sus inconvenientes destacan el poco conocimiento por parte del paciente, la baja resistencia mecánica, su mayor susceptibilidad a la degradación por temperatura y humedad; la falta, a veces, de bioequivalencia con las formulaciones convencionales, y la dificultad de obtener liberaciones prolongadas o retardadas del principio activo.A nivel tecnológico, existen varios procesos que se pueden aplicar en su elaboración. Con los métodos clásicos de elaboración de comprimidos, mediante la correcta selección de los excipientes y de las variables de la etapa de compresión se obtienen unos comprimidos en los que existe un equilibrio entre dureza y disgregación. Han surgido una serie de tecnologías novedosas: Flashtab, Wowtab, Orasolv y Durasolv. Otra opción es el empleo de técnicas de liofilización, aunque presenta como desventaja su alto coste. Algunas tecnologías especiales patentadas como son Lyoc, QuickSolv y Zydis. Por último, estos comprimidos se pueden elaborar por el método de los polímeros entrecruzados, también conocido como FlashDose y se basa en la formación de una matriz de hilos de azúcares entrelazados.The orally disintegrating tablets are defined as non-coated tablets intended to be placed in the mouth where they disperse rapidly before being swallowed. These formulations are known by the acronym FDDT's (Fast Dissolving Disintegrating Tablets). They are useful for administration to patients with swallowing difficulties, have a high acceptance by the patient, improve bioavailability of the active ingredient and represent a new alternative for the pharmaceutical industry. Among its disadvantages include limited knowledge by the patient, low mechanical strength, increased susceptibility to degradation by temperature and humidity; lack sometimes bioequivalence with conventional formulations, and the difficulty of obtaining prolonged release or delayed active ingredient. At the technological level, there are several processes that can be applied in their preparation. With classical methods of tabletting, by proper selection of excipients and the variables of the compression stage a tablet in which there is a balance between hardness and disintegration are obtained. Flashtab, Wowtab, Orasolv and Durasolv: They have a number of new technologies emerged. Another option is the use of freeze drying techniques, but has the disadvantage of its high cost. Some special patented technologies such as Lyoc, QuickSolv and Zydis. Finally, these tablets may be made by the method of Crosslinked polymers, also known as FlashDose and is based on the formation of a matrix of interwoven threads sugars

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Out-of-equilibrium physics in driven dissipative coupled resonator arrays

    Get PDF
    Coupled resonator arrays have been shown to exhibit interesting many- body physics including Mott and Fractional Hall states of photons. One of the main differences between these photonic quantum simulators and their cold atoms coun- terparts is in the dissipative nature of their photonic excitations. The natural equi- librium state is where there are no photons left in the cavity. Pumping the system with external drives is therefore necessary to compensate for the losses and realise non-trivial states. The external driving here can easily be tuned to be incoherent, coherent or fully quantum, opening the road for exploration of many body regimes beyond the reach of other approaches. In this chapter, we review some of the physics arising in driven dissipative coupled resonator arrays including photon fermionisa- tion, crystallisation, as well as photonic quantum Hall physics out of equilibrium. We start by briefly describing possible experimental candidates to realise coupled resonator arrays along with the two theoretical models that capture their physics, the Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the analytical and sophisticated numerical methods required to tackle these systems is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G.Angelakis, Quantum Science and Technology Series, Springer 201
    corecore