2,307 research outputs found

    Wakefield damping for the CLIC crab cavity

    Get PDF
    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively

    Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations

    Full text link
    Ongoing millimeter VLBI observations with the Event Horizon Telescope allow unprecedented study of the innermost portion of black hole accretion flows. Interpreting the observations requires relativistic, time-dependent physical modeling. We discuss the comparison of radiative transfer calculations from general relativistic MHD simulations of Sagittarius A* and M87 with current and future mm-VLBI observations. This comparison allows estimates of the viewing geometry and physical conditions of the Sgr A* accretion flow. The viewing geometry for M87 is already constrained from observations of its large-scale jet, but, unlike Sgr A*, there is no consensus for its millimeter emission geometry or electron population. Despite this uncertainty, as long as the emission region is compact, robust predictions for the size of its jet launching region can be made. For both sources, the black hole shadow may be detected with future observations including ALMA and/or the LMT, which would constitute the first direct evidence for a black hole event horizon.Comment: 8 pages, 2 figures, submitted to the proceedings of AHAR 2011: The Central Kiloparse

    Analytical solutions of bound timelike geodesic orbits in Kerr spacetime

    Full text link
    We derive the analytical solutions of the bound timelike geodesic orbits in Kerr spacetime. The analytical solutions are expressed in terms of the elliptic integrals using Mino time λ\lambda as the independent variable. Mino time decouples the radial and polar motion of a particle and hence leads to forms more useful to estimate three fundamental frequencies, radial, polar and azimuthal motion, for the bound timelike geodesics in Kerr spacetime. This paper gives the first derivation of the analytical expressions of the fundamental frequencies. This paper also gives the first derivation of the analytical expressions of all coordinates for the bound timelike geodesics using Mino time. These analytical expressions should be useful not only to investigate physical properties of Kerr geodesics but more importantly to applications related to the estimation of gravitational waves from the extreme mass ratio inspirals.Comment: A typo in the first expression in equation 21 was fixe

    Initial study on the shape optimisation of the CLIC crab cavity

    Full text link
    The compact linear collider (CLIC) requires a crab cavity to align bunches prior to collision. The bunch structure demands tight amplitude and phase tolerances of the RF fields inside the cavity, for the minimal luminosity loss. Beam loading effects require special attention as it is one potential sources of field errors in the cavity. In order to assist the amplitude and phase control, we propose a travelling wave (TW) structure with a high group velocity allowing rapid propagation of errors out of the system. Such a design makes the cavity structure significantly different from previous ones. This paper will look at the implications of this on other cavity parameters and the optimisation of the cavity geometry.Comment: 3 pages. To be published in proceedings of LINAC 2008, Victoria, Canad

    X-band crab cavities for the CLIC beam delivery system

    Get PDF
    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC.Comment: Proceedings of X-Band Structures and Beam Dynamics Workshop (XB08), 44th ICFA beam dynamics workshop, Cockcroft Institute, UK, 1-4 dec. 200

    Current Status of Simulations

    Full text link
    As the title suggests, the purpose of this chapter is to review the current status of numerical simulations of black hole accretion disks. This chapter focuses exclusively on global simulations of the accretion process within a few tens of gravitational radii of the black hole. Most of the simulations discussed are performed using general relativistic magnetohydrodynamic (MHD) schemes, although some mention is made of Newtonian radiation MHD simulations and smoothed particle hydrodynamics. The goal is to convey some of the exciting work that has been going on in the past few years and provide some speculation on future directions.Comment: 15 pages, 14 figures, to appear in the proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 October 2012

    Validation of frequency and mode extraction calculations from time-domain simulations of accelerator cavities

    Full text link
    The recently developed frequency extraction algorithm [G.R. Werner and J.R. Cary, J. Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to be transformed into an efficient eigenmode solver is applied to a realistic accelerator cavity modeled with embedded boundaries and Richardson extrapolation. Previously, the frequency extraction method was shown to be capable of distinguishing M degenerate modes by running M different simulations and to permit mode extraction with minimal post-processing effort that only requires solving a small eigenvalue problem. Realistic calculations for an accelerator cavity are presented in this work to establish the validity of the method for realistic modeling scenarios and to illustrate the complexities of the computational validation process. The method is found to be able to extract the frequencies with error that is less than a part in 10^5. The corrected experimental and computed values differ by about one parts in 10^$, which is accounted for (in largest part) by machining errors. The extraction of frequencies and modes from accelerator cavities provides engineers and physicists an understanding of potential cavity performance as it depends on shape without incurring manufacture and measurement costs

    Spontaneous decay of an excited atom in an absorbing dielectric

    Get PDF
    Starting from the quantized version of Maxwell's equations for the electromagnetic field in an arbitrary linear Kramers-Kronig dielectric, spontaneous decay of the excited state of a two-level atom embedded in a dispersive and absorbing medium is studied and the decay rate is calculated. The calculations are performed for both the (Clausius-Mosotti) virtual cavity model and the (Glauber-Lewenstein) real cavity model. It is shown that owing to nonradiative decay associated with absorption the rate of spontaneous decay sensitively depends on the cavity radius when the atomic transition frequency approaches an absorption band of the medium. Only when the effect of absorption is fully disregarded, then the familiar local-field correction factors are recovered.Comment: 28 pages, 6 figures, typeset using RevTe

    The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability

    Full text link
    In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap
    corecore