16 research outputs found

    Risk of high blood pressure in salt workers working near salt milling plants: A cross-sectional and interventional study

    Get PDF
    BACKGROUND: Workers working close to salt milling plants may inhale salt particles floating in the air, leading to a rise in plasma sodium, which, in turn, may increase the blood pressure and the risk of hypertension. METHODS: To test the above hypothesis, occupational health check-up camps were organized near salt manufacturing units and all workers were invited for a free health examination. The workers who worked with dry salt in the vicinity of salt milling plants were defined as "non-brine workers," while those working in brine pans located far away from milling plants were defined as "brine workers." Blood pressure (BP) was measured during each clinical examination. In all, 474 non-brine workers and 284 brine workers were studied. RESULTS: Mean systolic blood pressure of non-brine workers (122.1 ± 13.3 mm Hg) was significantly higher than that of brine workers (118.8 ± 12.8 mm Hg, p < 0.01). Mean diastolic blood pressure of non-brine workers (71.5 ± 10.4 mm Hg) was significantly higher than that of brine workers (69.7 ± 9.4 mm Hg, p = 0.02). The prevalence of hypertension was significantly higher in non-brine workers (12.2%) than in brine workers (7.0%, p = 0.02). Nineteen salt workers were monitored while they used face masks and spectacles, for six days. Systolic, as well as diastolic, blood pressure of these workers began declining on the third day and continued to decline on the fourth day, but remained stationary up to the sixth day. The concentration of salt particles in the breathing zone of these workers was 376 mg/m(3 )air. CONCLUSION: Inhalation of salt particles in non-brine workers may be an occupational cause of increased blood pressure

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of \sim1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2^2 at a luminosity distance of 408+840^{+8}_{-8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at \sim40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over \sim10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position \sim9 and \sim16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged

    The Moho depth map of the European Plate

    No full text
    The European Plate has a 4.5 Gy long and complex tectonic history. This is reflected in the present-day large-scale crustal structures. A new digital Moho depth map is compiled from more than 250 data sets of individual seismic profiles, 3-D models obtained by body and surface waves, receiver function results and maps of seismic and/or gravity data compilations. We have compiled the first digital, high-resolution map of the Moho depth for the whole European Plate, extending from the mid-Atlantic ridge in the west to the Ural Mountains in the east, and from the Mediterranean Sea in the south to the Barents Sea and Spitsbergen in the Arctic in the north. In general, three large domains within the European Plate crust are visible. The oldest Archean and Proterozoic crust has a thickness of 40–60 km, the continental Variscan and Alpine crust has a thickness of 20–40 km, and the youngest oceanic Atlantic crust has a thickness of 10–20 km
    corecore