80 research outputs found
Childhood Predictors of Adult Functional Outcomes in the Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder (MTA)
ObjectiveRecent results from the Multimodal Treatment Study of Attention-Deficit/Hyperactivity Disorder (ADHD; MTA) have demonstrated impairments in several functioning domains in adults with childhood ADHD. The childhood predictors of these adult functional outcomes are not adequately understood. The objective of the present study was to determine the effects of childhood demographic, clinical, and family factors on adult functional outcomes in individuals with and without childhood ADHD from the MTA cohort.MethodRegressions were used to determine associations of childhood factors (age range 7-10 years) of family income, IQ, comorbidity (internalizing, externalizing, and total number of non-ADHD diagnoses), parenting styles, parental education, number of household members, parental marital problems, parent-child relationships, and ADHD symptom severity with adult outcomes (mean age 25 years) of occupational functioning, educational attainment, emotional functioning, sexual behavior, and justice involvement in participants with (n = 579) and without (n = 258) ADHD.ResultsPredictors of adult functional outcomes in ADHD included clinical factors such as baseline ADHD severity, IQ, and comorbidity; demographic factors such as family income, number of household members and parental education; and family factors such as parental monitoring and parental marital problems. Predictors of adult outcomes were generally comparable for children with and without ADHD.ConclusionChildhood ADHD symptoms, IQ, and household income levels are important predictors of adult functional outcomes. Management of these areas early on, through timely treatments for ADHD symptoms, and providing additional support to children with lower IQ and from households with low incomes, could assist in improving adult functioning
Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy
CurePSP Foundation, the Peebler PSP Research Foundation, and National Institutes on Health (NIH) grants R37 AG 11762, R01 PAS-03-092, P50 NS72187, P01 AG17216 [National Institute on Aging(NIA)/NIH], MH057881 and MH077930 [National Institute of Mental Health (NIMH)]. Work was also supported in part by the NIA Intramural Research Program, the German National Genome Research Network (01GS08136-4) and the Deutsche Forschungsgemeinschaft (HO 2402/6-1), Prinses Beatrix Fonds (JCvS, 01–0128), the Reta Lila Weston Trust and the UK Medical Research Council (RdS: G0501560). The Newcastle Brain Tissue Resource provided tissue and is funded in part by a grant from the UK Medical Research Council (G0400074), by the Newcastle NIHR Biomedical Research Centre in Ageing and Age Related Diseases to the Newcastle upon Tyne Hospitals NHS Foundation Trust, and by a grant from the Alzheimer’s Society and Alzheimer’s Research Trust as part of the Brains for
Dementia Resarch Project. We acknowledge the contribution of many tissue samples from the Harvard Brain Tissue Resource Center. We also acknowledge the 'Human Genetic Bank of Patients affected by Parkinson Disease and parkinsonism' (http://www.parkinson.it/dnabank.html) of the Telethon Genetic Biobank Network, supported by TELETHON Italy (project n. GTB07001) and by Fondazione Grigioni per il Morbo di Parkinson. The University of Toronto sample collection was supported by grants from Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research. Brain-Net-Germany is supported by BMBF (01GI0505). RdS, AJL and JAH are funded by the Reta Lila Weston Trust and the PSP (Europe) Association. RdS is funded by the UK Medical Research Council (Grant G0501560) and Cure PSP+. ZKW is partially supported by the NIH/NINDS 1RC2NS070276, NS057567, P50NS072187, Mayo Clinic Florida (MCF)Research Committee CR programs (MCF #90052030 and MCF #90052030), and the gift from Carl Edward Bolch, Jr., and Susan Bass Bolch (MCF #90052031/PAU #90052). The Mayo Clinic College of Medicine would like to acknowledge Matt Baker, Richard Crook, Mariely DeJesus-Hernandez and Nicola Rutherford for their preparation of samples. PP was supported by a grant from the Government of Navarra ("Ayudas para la Realización de Proyectos de Investigación" 2006–2007) and acknowledges the "Iberian Atypical Parkinsonism Study Group Researchers", i.e. Maria A. Pastor, Maria R. Luquin, Mario Riverol, Jose A. Obeso and Maria C Rodriguez-Oroz (Department of Neurology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain), Marta Blazquez (Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Adolfo Lopez de Munain, Begoña Indakoetxea, Javier Olaskoaga, Javier Ruiz, José Félix Martí Massó (Servicio de Neurología, Hospital Donostia, San Sebastián, Spain), Victoria Alvarez (Genetics Department, Hospital Universitario Central de Asturias, Oviedo, Spain), Teresa Tuñon (Banco de Tejidos Neurologicos, CIBERNED, Hospital de Navarra, Navarra, Spain), Fermin Moreno (Servicio de Neurología, Hospital Ntra. Sra. de la Antigua, Zumarraga, Gipuzkoa, Spain), Ainhoa Alzualde (Neurogenétics Department, Hospital Donostia, San Sebastián, Spain)
Genetic, transcriptomic, histological, and biochemical analysis of progressive supranuclear palsy implicates glial activation and novel risk genes
Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer’s disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10−8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson’s disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.</p
Colony Collapse Disorder: A Descriptive Study
BACKGROUND: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. METHODS AND PRINCIPAL FINDINGS: Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. CONCLUSIONS/SIGNIFICANCE: This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted
Recommended from our members
Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07
Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease
We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
A novel Alzheimer disease locus located near the gene encoding tau protein
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
- …