150 research outputs found

    Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    Full text link
    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 < tau < 0.1 mag d-1 which would imply that H0 = 28 -- strongly inconsistent with H0,B2005 = 23.26 +/- 0.02 predicted by Bottke et al. (2005) using purely collisional models. We postulate that the solution to the discrepancy is that > 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V = 18.5.Comment: 61 Pages, 10 Figures, 3 Table

    Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104

    Get PDF
    We report the discovery and multi-wavelength data analysis of the peculiar optical transient, ATLAS17aeu. This transient was identified in the skymap of the LIGO gravitational wave event GW170104 by our ATLAS and Pan-STARRS coverage. ATLAS17aeu was discovered 23.1hrs after GW170104 and rapidly faded over the next 3 nights, with a spectrum revealing a blue featureless continuum. The transient was also detected as a fading x-ray source by Swift and in the radio at 6 and 15 GHz. A gamma ray burst GRB170105A was detected by 3 satellites 19.04hrs after GW170104 and 4.10hrs before our first optical detection. We analyse the multi-wavelength fluxes in the context of the known GRB population and discuss the observed sky rates of GRBs and their afterglows. We find it statistically likely that ATLAS17aeu is an afterglow associated with GRB170105A, with a chance coincidence ruled out at the 99\% confidence or 2.6σ\sigma. A long, soft GRB within a redshift range of 1z2.91 \lesssim z \lesssim 2.9 would be consistent with all the observed multi-wavelength data. The Poisson probability of a chance occurrence of GW170104 and ATLAS17aeu is p=0.04p=0.04. This is the probability of a chance coincidence in 2D sky location and in time. These observations indicate that ATLAS17aeu is plausibly a normal GRB afterglow at significantly higher redshift than the distance constraint for GW170104 and therefore a chance coincidence. However if a redshift of the faint host were to place it within the GW170104 distance range, then physical association with GW170104 should be considered.Comment: 16 pages, 6 figures, accepted to Ap

    Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey

    Get PDF
    We present griz light curves of 146 spectroscopically confirmed Type Ia Supernovae (0.03<z<0.650.03 < z <0.65) discovered during the first 1.5 years of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2\% without accounting for the uncertainty in the HST Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only SNe and assuming a constant dark energy equation of state and flatness, yields w=1.1200.206+0.360(Stat)0.291+0.269(Sys)w=-1.120^{+0.360}_{-0.206}\textrm{(Stat)} ^{+0.269}_{-0.291}\textrm{(Sys)}. When combined with BAO+CMB(Planck)+H0H_0, the analysis yields ΩM=0.2800.012+0.013\Omega_{\rm M}=0.280^{+0.013}_{-0.012} and w=1.1660.069+0.072w=-1.166^{+0.072}_{-0.069} including all identified systematics (see also Scolnic et al. 2014). The value of ww is inconsistent with the cosmological constant value of 1-1 at the 2.3σ\sigma level. Tension endures after removing either the BAO or the H0H_0 constraint, though it is strongest when including the H0H_0 constraint. If we include WMAP9 CMB constraints instead of those from Planck, we find w=1.1240.065+0.083w=-1.124^{+0.083}_{-0.065}, which diminishes the discord to <2σ<2\sigma. We cannot conclude whether the tension with flat Λ\LambdaCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 supernova sample with  ⁣ ⁣\sim\!\!3 times as many SNe should provide more conclusive results.Comment: 38 pages, 16 figures, 14 tables, ApJ in pres

    Systematic Uncertainties Associated with the Cosmological Analysis of the First Pan-STARRS1 Type Ia Supernova Sample

    Get PDF
    We probe the systematic uncertainties from 113 Type Ia supernovae (SNIa) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. (2013) describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ~0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037\pm0.031 mag for host galaxies with high and low masses. Assuming flatness in our analysis of only SNe measurements, we find w=1.1200.206+0.360(Stat)0.291+0.269(Sys)w = {-1.120^{+0.360}_{-0.206}\textrm{(Stat)} ^{+0.269}_{-0.291}\textrm{(Sys)}}. With additional constraints from BAO, CMB(Planck) and H0 measurements, we find w=1.1660.069+0.072w = -1.166^{+0.072}_{-0.069} and ΩM=0.2800.012+0.013\Omega_M=0.280^{+0.013}_{-0.012} (statistical and systematic errors added in quadrature). Significance of the inconsistency with w=1w=-1 depends on whether we use Planck or WMAP measurements of the CMB: wBAO+H0+SN+WMAP=1.1240.065+0.083w_{\textrm{BAO+H0+SN+WMAP}}=-1.124^{+0.083}_{-0.065}.Comment: 24 pages, 20 figures. Accepted by Ap

    Main-Belt Comet P/2012 T1 (PANSTARRS)

    Full text link
    We present initial results from observations and numerical analyses aimed at characterizing main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between October 2012 and February 2013 using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research (SOAR) telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 microns that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of QCN<1.5x10^23 mol/s, from which we infer a water production rate of QH2O<5x10^25 mol/s, and no evidence of the presence of hydrated minerals. Numerical simulations indicate that P/2012 T1 is largely dynamically stable for >100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveal that it is dynamically linked to the ~155 Myr-old Lixiaohua asteroid family.Comment: 15 pages, 4 figures, accepted for publication in ApJ Letter

    Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    Get PDF
    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M(r) ~ -15.3 mag, while the second one (Event B) occurred over one month later and reached M(r) ~ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is detectable several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of a SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. The similarity with SN 2005gl suggests that all members of this family may finally explode as genuine SNe, although the unequivocal detection of nucleosynthesised elements in their nebular spectra is still missing.Comment: Submitted to MNRAS on April 10, 2017; re-submitted on June 23 including suggestions from the referee. 24 pages, 12 figures, 5 table

    NEOWISE Observations of Near-Earth Objects: Preliminary Results

    Full text link
    With the NEOWISE portion of the \emph{Wide-field Infrared Survey Explorer} (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 μ\mum, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniformity in sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981±\pm19 NEAs larger than 1 km and 20,500±\pm3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32±\pm0.14 below 1.5 km. This power law slope produces 13,200±\sim13,200\pm1,900 NEAs with D>D>140 m. Although previous studies predict another break in the cumulative size distribution below DD\sim50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100-1000 m are lower than previous estimates. The numbers of near-Earth comets will be the subject of future work.Comment: Accepted to Ap

    Observational and Dynamical Characterization of Main-Belt Comet P/2010 R2 (La Sagra)

    Full text link
    We present observations of comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS 1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed from August 2010 through February 2011, while a dust trail aligned with the object's orbit plane is also observed from December 2010 through August 2011. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between August 2010 and December 2010, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H_R=17.9+/-0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an albedo of p=0.05. Using optical spectroscopy, we find no evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q_CN<6x10^23 mol/s, from which we infer an H2O production rate of Q_H2O<10^26 mol/s. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is likely representative of other objects in the same region of the main belt, though the relatively close proximity of the 13:6 mean-motion resonance with Jupiter and the (3,-2,-1) three-body mean-motion resonance with Jupiter and Saturn mean that dynamical instability on larger timescales cannot be ruled out.Comment: 23 pages, 13 figures, accepted for publication in A
    corecore