104 research outputs found

    Marked efficacy of Rituximab in multifocal motor neuropathy associated with chronic lymphocytic leukemia

    Get PDF
    The authors describe a patient who presented a multifocal motor neuropathy (MMN) associated with a high anti-ganglioside antibody (anti-GM1 and anti-GD1) titer at the clinical onset of a B-cell chronic lymphocytic leukemia (B-CLL). Immunomodulation (IVIg plus cyclosporine) resulted in a neurological improvement and reduced anti-ganglioside antibody titers, both of which remained stable for at least six years. After this period, the patient had a severe relapse of the neuropathy, which was independent of the clinical course of the B-CLL. Both IVIg and cyclophosphamide were ineffective, and the patient became tetraplegic within six months; in the meantime, the patient displayed an increased antiganglioside antibody titer. Treatment with rituximab (RTX), which is designed to selectively inhibit B cell function, resulted in a dramatic, prompt and long-lasting neurological improvement as well as a reduced anti-ganglioside antibody titer. Although there are no previous reports of MMN in patients with B-CLL, the efficacy of RTX in the treatment of MMN in this patient may be considered remarkable. The expansion of B-cell clones may be a prerequisite for RTX effectiveness in MMN, and in dysimmune neuropathies in general

    Marked efficacy of rituximab in multifocal motor neuropathy associated with chronic lymphocytic leukemia

    Get PDF
    The authors describe a patient who presented a multifocal motor neuropathy (MMN) associated with a high anti-ganglioside antibody (anti-GM1 and anti-GD1) titer at the clinical onset of a B-cell chronic lymphocytic leukemia (B-CLL). Immunomodulation (IVIg plus cyclosporine) resulted in a neurological improvement and reduced anti-ganglioside antibody titers, both of which remained stable for at least six years. After this period, the patient had a severe relapse of the neuropathy, which was independent of the clinical course of the B-CLL. Both IVIg and cyclophosphamide were ineffective, and the patient became tetraplegic within six months; in the meantime, the patient displayed an increased antiganglioside antibody titer. Treatment with rituximab (RTX), which is designed to selectively inhibit B cell function, resulted in a dramatic, prompt and long-lasting neurological improvement as well as a reduced antiganglioside antibody titer. Although there are no previous reports of MMN in patients with B-CLL, the eficacy of RTX in the treatment of MMN in this patient may be considered remarkable. The expansion of B-cell clones may be a prerequisite for RTX effectiveness in MMN, and in dysimmune neuropathies in general

    Characterisation of quinoa (Chenopodium quinoa Willd.) accessions for the saponin content in Mediterranean environment

    Get PDF
    Seeds of the Andean seed crop quinoa (Chenopodium quinoa Willd.) usually contain saponins in the seed coat. Saponins give a bitter taste sensation and are a serious antinutritional factor, therefore selection of sweet genotypes with a very low saponin content in the seeds is a main breeding goal. The objective of this work was to identify, within germplasm lines of quinoa, previously selected for production and quality traits, superior genotypes low in saponins. For this purpose the total saponin content was determined in seeds of eight lines of quinoa and one variety (cv. Regalona Baer) as a control, previously evaluated over a 2-year period in a Southern Italy environment. Significant variation for the saponin content was observed among the evaluated genotypes. The total saponin content ranged from 0.10 to 1.80 %, with the Q12 genotype showing the lowest value, suggesting the possibility of selecting genotypes "sweet" to be used in subsequent genetic improvement programs. Based on these results, in fact, it was possible to identify, among the accessions previously selected, particularly suitable for growing in Mediterranean area, some genotypes with high yields of seed (2.5 the-1, on average), high protein (17%, on average) and fibers (13%, on average) and low content in saponins (0.57%, on average)

    A first insight into the Marsili volcanic seamount (Tyrrhenian Sea, Italy): results from ORION-GEOSTAR3 experiment

    Get PDF
    The Marsili Seamount is the largest European underwater volcano. It is Plio-Pleistocenic in age, rising up to more than 3000m from the seafloor in the SE Tyrrhenian basin (Central Mediterranean), a back arc basin which began progressively opening 10 Ma ago (Kastens et al., 1988). The seamount lies in a key area for understanding the evolution of the Tyrrhenian region, characterized by high values of heat flow (Della Vedova et al., 2001) and low values of Moho isobaths (Locardi and Nicolich, 1988). In spite of the large dimensions of the Marsili seamount, we still have limited knowledge of its present activity. Ocean exploration is dependent on available technology and infrastructure, which started to develop strongly only after the 1980s. In fact, from its discovery in the 1920s, very little was known of the Marsili Seamount until the late 1990s when new techniques such as multibeam acoustic bathymetry were developed allowed to reveal at least the morphology. Some dedicated expeditions then obtained the first morpho-bathimetric map of the entire Tyrrhenian seafloor, based on multibeam swath-mapping together with seismic, gravimetric and magnetometric data (e.g. Marani and Gamberi, 2004). Although these data have greatly contributed to our understanding, the necessarily short measurement time limits the extent to which they reflect short- to medium-term geophysical processes in the Tyrrhenian basin. New technologies, such as multiparameter seafloor observatories, provide long-term continuous time-series in deep ocean waters, which are the basis for an original approach in ocean exploration. The observation of phenomena variability over time is key to understanding many Earth processes, among which we recall hydrothermal activity, active tectonics, and ecosystem life cycles. The development in Europe of multidisciplinary seafloor observatories has been pioneered under the EC Framework Programmes, specifically in the GEOSTAR projects (Beranzoli et al., 1988, 2000). From 2003 to 2005, long-term geophysical and oceanographic monitoring was conducted within the EC ORION-GEOSTAR3 project with two multiparameter observatories deployed on the seafloor 3320m below sea level (b.s.l.) in the vicinity of the Marsili Seamount. The two observatories were equipped with a set of sensors providing long-term continuous time-series of various physical measurements. The acquired time series are the longest continuous data record of the Marsili Basin available so far. This chaper intends to provide the main information on this experiment and present some results of the processing of the corresponding time-series, adding new valuable information on the still poorly explored activity of the volcano seamount. This chapter is organized as follows: The next section will provide the geological setting to understanding the importance of the Marsili Seamount and its basin; the ORION-GEOSTAR3 experiment is described in Section 24.3; some results from this unprecedented seismic, magnetic and gravimetric data analyses are shown in Section 24.4; and finally, in the last section we present our discussion with the main conclusions.Published623-6413A. Geofisica marina e osservazioni multiparametriche a fondo mar

    Antioxidant capacity, phenolic and vitamin C contents of quinoa (Chenopodium quinoa Willd.) as affected by sprouting and storage conditions

    Get PDF
    Antioxidant capacity (AC) of quinoa (Chenopodium quinoa Willd. cv. Real) seeds and sprouts obtained after 4 days of seed germination at 20°C and 70% humidity was evaluated using trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays, able to highlight reducing activity and peroxyl radical scavenging capacity, respectively; phenolic content (PC) was also measured. Both TEAC and ORAC assays revealed a significantly higher (about 2- and 2.8-fold, respectively) AC of 4-day-old sprouts compared to seeds; consistently, also PC values of sprouts resulted about 2.6 times higher than seeds. In order to investigate the influence of storage on AC and PC, as well as on vitamin C content (VCC), 4-day-old sprouts were subjected for 7 days at 5°C to three different conditions of controlled atmosphere storage (CAS) compared with air. Interestingly, whatever the CAS conditions, storage of quinoa sprouts up to 7 days induced an increase of AC evaluated in terms of reducing activity by TEAC assay. Consistently, an increase of PC and VCC was measured during storage, positively correlated to TEAC values. Moreover, a decrease of peroxyl radical scavenging activity, measured by ORAC, was observed after 7 days of storage, in accordance with a shift of AC towards the reducing activity component. Overall, these findings indicate that sprouting approach using quinoa may provide highly antioxidant-enriched seedlings that may improve nutritional quality of diet or of functional foods. Interestingly, antioxidant properties of quinoa sprouts may be deeply influenced by storage, able to increase reducing activity by increasing phenols and vitamin C

    Human Adipose Mesenchymal Stromal/Stem Cells Improve Fat Transplantation Performance

    Get PDF
    The resorption rate of autologous fat transfer (AFT) is 40-60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation. We report a xenograft model of adipose tissue engineering in which NOD/SCID mice underwent AFT with/without human autologous AD-MSCs and were monitored for 180 days (d). The effect of AD-MSCs on AFT grafting was also monitored by evaluating the expression of CD31 and F4/80 markers. Green fluorescent protein-positive AD-MSCs (AD-MSC-GFP) were detected in fibroblastoid cells 7 days after transplantation and in mature adipocytes at 60 days, indicating both persistence and differentiation of the implanted cells. This evidence also correlated with the persistence of a higher graft weight in AFT-AD-MSC compared to AFT alone treated mice. An observation up to 180 d revealed a lower resorption rate and reduced lipidic cyst formation in the AFT-AD-MSC group, suggesting a long-term action of AD-MSCs in support of AFT performance and an anti-inflammatory/proangiogenic activity. Together, these data indicate the protective role of adipose progenitors in autologous AFT tissue resorption

    Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort.

    Get PDF
    Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. [Abstract copyright: © 2022 The Authors.

    COVID-19-associated Guillain-Barré syndrome in the early pandemic experience in Lombardia (Italy)

    Get PDF
    Objective To estimate the incidence and describe clinical characteristics and outcome of GBS in COVID-19 patients (COVID19-GBS) in one of the most hit regions during the frst pandemic wave, Lombardia. Methods Adult patients admitted to 20 Neurological Units between 1/3–30/4/2020 with COVID19-GBS were included as part of a multi-center study organized by the Italian society of Hospital Neuroscience (SNO). Results Thirty-eight COVID19-GBS patients had a mean age of 60.7 years and male frequency of 86.8%. CSF albuminocytological dissociation was detected in 71.4%, and PCR for SARS-CoV-2 was negative in 19 tested patients. Based on neurophysiology, 81.8% of patients had a diagnosis of AIDP, 12.1% of AMSAN, and 6.1% of AMAN. The course was favorable in 76.3% of patients, stable in 10.5%, while 13.2% worsened, of which 3 died. The estimated occurrence rate in Lombardia ranges from 0.5 to 0.05 GBS cases per 1000 COVID-19 infections depending on whether you consider positive cases or estimated seropositive cases. When we compared GBS cases with the pre-pandemic period, we found a reduction of cases from 165 to 135 cases in the 2-month study period in Lombardia. Conclusions We detected an increased incidence of GBS in COVID-19 patients which can refect a higher risk of GBS in COVID-19 patients and a reduction of GBS events during the pandemic period possibly due to a lower spread of more common respiratory infectious diseases determined by an increased use of preventive measures

    NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea

    Get PDF
    The NEutrinoMediterranean Observatory—Submarine Network 1 (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100-m water depth, 25 km from the harbor of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the European Multidisciplinary Seafloor Observatory (EMSO), one of the incoming European large-scale research infrastructures included in the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to marine ecosystems, marine mammals, climate change, and geohazards
    • …
    corecore