32 research outputs found

    Benefit of continuous treatment for responders with newly diagnosed multiple myeloma in the randomized FIRST trial

    Get PDF
    © 2017 The Authors. Published by Nature Publishing Group. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/leu.2017.111© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. The phase 3, randomized Frontline Investigation of Revlimid and Dexamethasone Versus Standard Thalidomide (FIRST) trial investigating lenalidomide plus low-dose dexamethasone until disease progression (Rd continuous) vs melphalan, prednisone and thalidomide for 12 cycles (MPT) and Rd for 18 cycles (Rd18) in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM) showed that Rd continuous prolonged progression-free survival and overall survival compared with MPT. A subanalysis of the FIRST trial was conducted to determine the benefits of Rd continuous in patients with NDMM based on depth of response. Patients randomized 1:1:1 to Rd continuous, Rd18 or MPT were divided into subgroups based on best response: complete response (CR; n=290), ≥ very good partial response (VGPR; n=679), ≥ partial response (PR; n=1 225) or ≤ stable disease (n=299). Over 13% of patients receiving Rd continuous who achieved ≥ VGPR as best response did so beyond 18 months of treatment. Rd continuous reduced the risk of progression or death by 67%, 51% and 35% vs MPT in patients with CR, ≥ VGPR and ≥ PR, respectively. Similarly, Rd continuous reduced the risk of progression or death by 61%, 54% and 38% vs Rd18 in patients with CR, ≥ VGPR and ≥ PR, respectively. In patients with CR, ≥ VGPR or ≥ PR, 4-year survival rates in the Rd continuous arm (81.1%, 73.1% or 64.6%, respectively) were higher vs MPT (70.8%, 59.8% or 57.2%, respectively) and similar vs Rd18 (76.5%, 67.7% and 62.5%, respectively). Rd continuous improved efficacy outcomes in all responding patients, including those with CR, compared with fixed duration treatment.Published versio

    The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms

    Get PDF
    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups-from single-celled bacteria to multicellular flatworms-yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host-parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field

    Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review

    Get PDF
    Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy

    Get PDF

    Primary follicular lymphoma of the duodenum

    No full text
    La localisation duodénale des lymphomes folliculaires est considérée comme rare, mais l'incidence de ces tumeurs est en augmentation. Nous rapportons une observation de lymphome primitif du duodénum, montrant la similitude des données endoscopiqucs avec celles de la papulose lymphomateuse des lymphomes du manteau. Les techniques immunohistochimiques et cytogénétiques aident à différencier ces deux tumeurs. Il est essentiel de les différencier car leur pronostic et les modalités de traitement sont différents
    corecore