10,395 research outputs found

    Right eigenvalue equation in quaternionic quantum mechanics

    Full text link
    We study the right eigenvalue equation for quaternionic and complex linear matrix operators defined in n-dimensional quaternionic vector spaces. For quaternionic linear operators the eigenvalue spectrum consists of n complex values. For these operators we give a necessary and sufficient condition for the diagonalization of their quaternionic matrix representations. Our discussion is also extended to complex linear operators, whose spectrum is characterized by 2n complex eigenvalues. We show that a consistent analysis of the eigenvalue problem for complex linear operators requires the choice of a complex geometry in defining inner products. Finally, we introduce some examples of the left eigenvalue equations and highlight the main difficulties in their solution.Comment: 24 pages, AMS-Te

    Surprises in the phase diagram of an Anderson impurity model for a single C60n−_{60}^{n-} molecule

    Full text link
    We find by Wilson numerical renormalization group and conformal field theory that a three-orbital Anderson impurity model for a C60n−_{60}^{n-} molecule has a very rich phase diagram which includes non-Fermi-liquid stable and unstable fixed points with interesting properties, most notably high sensitivity to doping nn. We discuss the implications of our results to the conductance behavior of C60_{60}-based single-molecule transistor devices.Comment: 4 pages, 3 figures, 2 tables. Accepted versio

    The octonionic eigenvalue problem

    Get PDF
    By using a real matrix translation, we propose a coupled eigenvalue problem for octonionic operators. In view of possible applications in quantum mechanics, we also discuss the hermiticity of such operators. Previous difficulties in formulating a consistent octonionic Hilbert space are solved by using the new coupled eigenvalue problem and introducing an appropriate scalar product for the probability amplitudes.Comment: 21 page

    Solitons in a double pendulums chain model, and DNA roto-torsional dynamics

    Full text link
    It was first suggested by Englander et al to model the nonlinear dynamics of DNA relevant to the transcription process in terms of a chain of coupled pendulums. In a related paper [q-bio.BM/0604014] we argued for the advantages of an extension of this approach based on considering a chain of double pendulums with certain characteristics. Here we study a simplified model of this kind, focusing on its general features and nonlinear travelling wave excitations; in particular, we show that some of the degrees of freedom are actually slaved to others, allowing for an effective reduction of the relevant equations

    Quaternionic potentials in non-relativistic quantum mechanics

    Full text link
    We discuss the Schrodinger equation in presence of quaternionic potentials. The study is performed analytically as long as it proves possible, when not, we resort to numerical calculations. The results obtained could be useful to investigate an underlying quaternionic quantum dynamics in particle physics. Experimental tests and proposals to observe quaternionic quantum effects by neutron interferometry are briefly reviewed.Comment: 21 pages, 16 figures (ps), AMS-Te

    Quaternionic eigenvalue problem

    Full text link
    We discuss the (right) eigenvalue equation for H\mathbb{H}, C\mathbb{C} and R\mathbb{R} linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows to translate the quaternionic problem into an {\em equivalent} real or complex counterpart. Interesting applications are found in solving differential equations within quaternionic formulations of quantum mechanics.Comment: 13 pages, AMS-Te

    Quaternionic Electroweak Theory

    Full text link
    We explicitly develop a quaternionic version of the electroweak theory, based on the local gauge group U(1,q)L∣U(1,c)YU(1, q)_{L}\mid U(1, c)_{Y}. The need of a complex projection for our Lagrangian and the physical significance of the anomalous scalar solutions are also discussed.Comment: 12 pages, Revtex, submitted to J. Phys.

    Wave and Particle Limit for Multiple Barrier Tunneling

    Full text link
    The particle approach to one-dimensional potential scattering is applied to non relativistic tunnelling between two, three and four identical barriers. We demonstrate as expected that the infinite sum of particle contributions yield the plane wave results. In particular, the existence of resonance/transparency for twin tunnelling in the wave limit is immediately obvious. The known resonances for three and four barriers are also derived. The transition from the wave limit to the particle limit is exhibit numerically.Comment: 15 pages, 3 figure

    Dirac Equation Studies in the Tunnelling Energy Zone

    Full text link
    We investigate the tunnelling zone V0 < E < V0+m for a one-dimensional potential within the Dirac equation. We find the appearance of superluminal transit times akin to the Hartman effect.Comment: 12 pages, 4 figure

    An Analytic Approach to the Wave Packet Formalism in Oscillation Phenomena

    Get PDF
    We introduce an approximation scheme to perform an analytic study of the oscillation phenomena in a pedagogical and comprehensive way. By using Gaussian wave packets, we show that the oscillation is bounded by a time-dependent vanishing function which characterizes the slippage between the mass-eigenstate wave packets. We also demonstrate that the wave packet spreading represents a secondary effect which plays a significant role only in the non-relativistic limit. In our analysis, we note the presence of a new time-dependent phase and calculate how this additional term modifies the oscillating character of the flavor conversion formula. Finally, by considering Box and Sine wave packets we study how the choice of different functions to describe the particle localization changes the oscillation probability.Comment: 16 pages, 7 figures, AMS-Te
    • …
    corecore