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Abstract
By using a real matrix translation, we propose a coupled eigenvalue problem for
octonionic operators. In view of possible applications in quantum mechanics,
we also discuss the hermiticity of such operators. Previous difficulties in
formulating a consistent octonionic Hilbert space are solved by using the new
coupled eigenvalue problem and introducing an appropriate scalar product for
the probability amplitudes.

PACS numbers: 02.30.Tb, 03.65.Fd

1. Introduction

Developments in quaternionic matrix theory produced interesting and important results in
approaching and solving quaternionic eigenvalue problems [1, 2] and linear differential
equations with quaternionic coefficients [3, 4]. This renewed the interest in studying
quaternionic formulations of quantum mechanics [5]. Previous discussions on quaternionic
diffusion and tunneling phenomena [6–11] and recent analysis of confined states [12] are now
based on a more solid mathematical understanding of the quaternionic structures involved in
such physical problems. Consequently, many of the previous hidden aspects of theory have
been clarified and more convincing proposals of quaternionic deviations from complex theory
can now be formulated. If quaternions, due to their non-commutativity, represent a challenge
for mathematicians and physicists, the use of octonions to formulate quantum theories, due
to their non-commutativity and non-associativity, seems a very hard challenge. It will soon
become clear that describing the physical world in terms of octonionic mathematical structures
involves many conceptual (algebraic and analytic) difficulties that the lack of associativity
inevitably conjures up [13, 14]. In this spirit, the paper was intended as an attempt to
motivate and stimulate the study of octonionic mathematical problems in view of possible
applications in physical theory. The main difficulty in carrying out octonionic formulations
of quantum mechanics is related to the appropriate definition of octonionic Hilbert spaces
and scalar products [5, 15, 16]. In the following section, we shall come back to this point
and present a detailed discussion on octonionic operators and complex geometry. We shall
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see that the use of basic concepts in quantum mechanics, such as the correct choice of the
number system to appropriately define amplitudes of probabilities, suggests the introduction of
coupled octonionic eigenvalue equations where two real parameters play the role that complex
eigenvalues do in complex and quaternionic quantum mechanics.

To proceed with the main topic of our paper, i.e. the octonionic eigenvalue problem in
quantum mechanics, let us set up notation and terminology, and study a simple eigenvalue
problem by using complex, quaternionic and octonionic algebras. This shall elucidate in a
practical way some of the difficulties due to loss of commutativity and associativity.

Let O be the octonionic division algebra. A generic element in this algebra will be
represented by

o = r0 +
7∑

m=1

rmem, r0,1,...,7 ∈ R, (1)

where em are the octonionic imaginary units obeying the following non-commutative and
non-associative algebraic rules

emen = −δmn + εmnp ep, (2)

with m, n, p = 1, 2, . . . , 7 and εmnp which is a totally antisymmetric tensor equal to the unit
for the seven (quaternionic) combinations

123, 145, 176, 246, 257, 347 and 365. (3)

The conjugate, the norm and the inverse of an octonion are respectively defined by

o† = r0 −
7∑

m=1

rmem,

N(o) =
√

o†o =
√

oo† =
√

r2
0 + · · · + r2

7,

o−1 = o†/N(o)(0 �= 0). (4)

Let us now analyze a particular eigenvalue problem in four different contexts. Given the
Hermitian matrix

M =
(

1 e1

−e1 1

)
, (5)

we aim to find its complex, quaternionic and octonionic eigenvalues. In this paper, e1 represents
the imaginary unit of the complex field, C, and e1, e2 and e3 the imaginary units of the
quaternionic field H.

(i) The complex eigenvalue problem (CEP),

CEP : M � = λ �, � =
(

ψa

ψb

)
, ψa,b and λ ∈ C, (6)

can be easily solved by standard calculations. Its eigenvectors and eigenvalues are

{ψa, ψb; λ}1,2 = {z, e1z; 0}1 and {z,−e1z; 2}2 , z ∈ C.

(ii) In exactly the same way, we can establish the quaternionic version of equation (6). Due
to the non-commutativity of quaternions, we have to introduce left and right eigenvalue
problems. Let us first discuss the quaternionic left eigenvalue problem (QLEP),

QLEP : M � = λ �, � =
(

ψa

ψb

)
, ψa,b and λ ∈ H. (7)
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After some algebraic manipulations, we find the following eigenvectors and eigenvalues:

{ψa, ψb; λ} = {q, (αe1 + βe2 + γ e3)q; 1 − α + βe3 − γ e2} ,

where

α2 + β2 + γ 2 = 1, α, β, γ ∈ R and q ∈ H.

In addition to the complex result (β = γ = 0 and q = z), we find a surprising result, that is,
the Hermitian matrix M has quaternionic left eigenvalues. This apparent paradox is soon
explained by observing that, due to the non-commutativity of the quaternionic algebra,
the standard proof used to show that complex Hermitian matrices have real eigenvalues

�†(M�) = (M�)†� ⇒ �†λ� = (λ�)†�[= �†λ†�]

fails for quaternions. In fact, due to the position of the quaternionic eigenvalue λ,

�†λ� = �†λ†� ⇒/ λ = λ†.

(iii) To overcome this difficulty, we change the position of the eigenvalue in equation (7), and
introduce the quaternionic right eigenvalues problem (QREP),

QREP : M � = � λ, � =
(

ψa

ψb

)
, ψa,b and λ ∈ H. (8)

Simple calculations show that the QREP has the same eigenvalues of the CEP, i.e.

{ψa, ψb; λ}1,2 = {q, e1q; 0}1 and {q,−e1q; 2}2 .

The position of the quaternionic eigenvalue plays a fundamental role to guarantee real
eigenvalues for Hermitian matrices,

�†(M�) = (M�)†� ⇒ �†�λ = (�λ)†�[= λ†�†�] ⇒ λ = λ†.

(iv) What happens for quaternions suggests to consider an octonionic right-eigenvalue problem
(OREP),

OREP : M � = � λ, � =
(

ψa

ψb

)
, ψa,b and λ ∈ O. (9)

The matrix equation (9) implies

−ψ−1
b (e1ψa) = ψ−1

a (e1ψb) and λ = 1 + ψ−1
a (e1ψb).

Restricting ourselves to quaternionic sub-algebras containing e1, i.e.

e1e2e3, e1e4e5 and e1e7e6,

we immediately find the following solutions:

{ψa, ψb; λ}1,2 = {e2, e3; 0}1 and {e2,−e3; 2}2 ,

{e4, e5; 0}1 {e4,−e5; 2}2 ,

{e7, e6; 0}1 {e7,−e6; 2}2 .

To simplify our discussion, in this example we choose the quaternionic sub-algebra e1e2e3.
It is rather surprising that, notwithstanding the right position of the octonionic eigenvalue,
we find, as for the case of the QLEP, new solutions characterized by not real eigenvalues:

{ψa, ψb; λ}1,10 = {e2, e3; 0}1 and {e2,−e3; 2}2 ,

{e2, e4; 1 − e7}3 {e2,−e4; 1 + e7}4 ,

{e2, e5; 1 + e6}5 {e2,−e5; 1 − e6}6 ,

{e2, e6; 1 − e5}7 {e2,−e6; 1 + e5}8 ,

{e2, e7; 1 + e4}9 {e2,−e7; 1 − e4}10 .

3
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This result is well known in the literature. For a deeper discussion of similar problems
encountered in studying octonionic eigenvalue equations for Hermitian matrices and for
mathematical techniques to find the new not real eigenvalues, the best references are
[17–21]. In this paper, we are interested in presenting a conversion method, the main quite
practical, to find real eigenvalues of octonionic operators. The matrix representations for
these operators [22, 23] could be very useful in view of possible applications in quantum
mechanics. Before elaborating the core of our paper, let us briefly explain where the proof
given for the CEP and for the QREP is lacking in validity. Due to the non-associativity of
the octonionic algebra

�†(M�) �= (M�)†�[= (�†M)�].

Consequently, the position of the octonionic eigenvalue in the OREP is not sufficient to
guarantee the real nature of Hermitian matrix eigenvalues.

The results of this preliminary study are instructive for several reasons. Firstly, they show
that using a quaternionic algebra, a great simplification can be obtained by making an initial
assumption concerning the position of the quaternionic eigenvalue. Secondly, the possibility
of applying a similarity transformation (uλū = z) opens the door to translating the QREP in its
complex or real counterpart. This method is frequently employed to circumvent the difficulties
attendant upon the non-commutativity of quaternions [24]. What we aim to prove in this paper
is a stronger result. The existence of conversion rules for octonionic operators allows us to
give a practical method to solve the coupled octonionic eigenvalue problem (COEP) which
reduces to the QREP in the quaternionic limit [1].

2. Octonionic eigenvalue problem

2.1. Real matrix conversion

The non-associativity of octonions seems to suggest the impossibility of obtaining a real
matrix representations (with the standard matrix multiplication rules) for octonionic operators
[23]. Nevertheless, the use of left/right barred octonionic operators allows us to reproduce
the GL(8, R) group [22]. For the convenience of the reader and to make our exposition as
self-contained as possible, we repeat part of the material exposed in [22].

It is well known that octonions are a non-commutative algebra, so we must distinguish
between left and right actions of the octonionic imaginary units em, by introducing operators
Lo1 and Ro2 whose action on octonionic functions of a real variable, ψ , ψ : R → O, gives

Lo1ψ = o1 ψ and Ro2ψ = ψ o2, (10)

But octonions are also a non-associative algebra that means

o1(ψo2) �= (o1ψ)o2,

so Lo1 Ro2 ψ must be calculated, necessarily, in the order the operations appear, that is,

Lo1 Ro2ψ = Lo1 (Ro2ψ) = o1(ψo2)

and

Ro2 Lo1ψ = Ro2 (Lo1ψ) = (o1ψ)o2.

Naturally, the same holds for

Lo1 Lo2ψ = Lo1 (Lo2ψ) = o1(o2ψ)

4



J. Phys. A: Math. Theor. 45 (2012) 315203 S De Leo and G Ducati

and

Ro1 Ro2ψ = Ro1 (Ro2ψ) = Ro1 (ψo2) = (ψo2)o1.

In order to write the more general octonionic operator it is enough to describe all the possible
actions of the imaginary units em. So, computing the operators just described for the imaginary
units, we find

1, Lm, Rm 15 elements

LmRm = RmLm 7 elements

LmRn m �= n 42 elements

RnLm m �= n 42 elements (11)

for m, n = 1, . . . , 7, which totals 106 operators. However, it is possible to prove that LmRn can
be expressed by a suitable combination of RnLm operators, reducing the previous 106 elements
to 64 [22]. For example, we have

LmRn + LnRm = RnLm + RmLn.

As explicitly shown in appendix A of [22], it is possible to prove the linear independence of
these 64 elements which represent the most general octonionic operator

o0 +
7∑

m=1

Rm Lom , (12)

with o0, . . . , o7 ∈ O. This shows the correspondence between our generalized octonions,
equation (12) and GL(8, R).

In [23], the authors give representations of octonions and other non-associative algebras
by special matrices, which are endowed with special multiplication rules. The introduction of
left/right octonionic operators allows us to establish the isomorphism between themselves and
GL(8, R) with the standard multiplication rules. In order to explain the idea of conversion,
let us look explicitly at the action of the operators R1 and L2 on a generic octonionic function
ψ : R → O:

ψ(x) = ψ0(x) + e1ψ1(x) + e2ψ2(x) + e3ψ3(x) + e4ψ4(x) + e5ψ5(x) + e6ψ6(x) + e7ψ7(x)

with ψ0,...,7 : R → R. In order to simplify our notation, we omit x variable. So, let us calculate
R1ψ that gives

R1ψ = ψe1 = e1ψ0 − ψ1 − e3ψ2 + e2ψ3 − e5ψ4 + e4ψ5 + e7ψ6 − e6ψ7

and now, we calculate

L2ψ = e2ψ = e2ψ0 − e3ψ1 − ψ2 + e1ψ3 + e6ψ4 + e7ψ5 − e4ψ6 − e5ψ7.

If we represent the octonionic function ψ by a real column vector 8 × 1

ψ ↔ � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)
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we can rewrite ψe1 and e2ψ, respectively, as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 −1
1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ψ1

ψ0

ψ3

−ψ2

ψ5

−ψ4

−ψ7

ψ6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ψ2

ψ3

ψ0

−ψ1

−ψ6

−ψ7

ψ4

ψ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Following this procedure, we can construct the complete set of conversion rules for the
imaginary units operators Lm and Rm. Observe that if we multiply the matrices that represent
L1 and L2, we will find a new matrix that is different from L3, that is, L1L2 �= L3, while
e1e2 = e3. This bluff is soon explained. In deducing our conversion rules, we understand
octonions as operators, and so they must be applied to a certain octonionic function, ψ . If we
have the octonionic relation

(e1e2)ψ = e3ψ,

the matrix counterpart will be

L3ψ,

since the matrix counterparts are defined by their action upon a function and not upon another
operator. On the other hand,

e1(e2ψ) �= e3ψ

will be translated to

L1L2ψ = L1(L2ψ) �= L3ψ.

We have to differentiate between two kinds of multiplication, one, for octonions, denoted by
a middle dot, ‘·’, and the other, for octonionic operators, denoted by the usual multiplication
sign ‘×’. At the level of octonions, one has

e1 · e2 = e3,

but at the level of octonionic operators

L1 × L2 �= L3

but

L1 × L2 = L3 + R2L1 − L1R2.

Observe that the matricial representations of our operators enable us to reproduce the octonion
non-associativity by the matrix algebra. Consider, for example,

R1L3ψ = R1(L3ψ) = (e3ψ)e1 = e2ψ0 − e3ψ1 + ψ2 − e1ψ3 − e6ψ4 − e7ψ5 + e4ψ6 + e5ψ7

(14)

6



J. Phys. A: Math. Theor. 45 (2012) 315203 S De Leo and G Ducati

which gives, in matricial representation⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ2

−ψ3

ψ0

−ψ1

ψ6

ψ7

−ψ4

−ψ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whereas

L3R1ψ = L3(R1ψ) = e3(ψe1) = e2ψ0 − e3ψ1 + ψ2 − e1ψ3 + e6ψ4 + e7ψ5 − e4ψ6 − e5ψ7

(15)

which gives, in matricial representation⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ2

−ψ3

ψ0

−ψ1

−ψ6

−ψ7

ψ4

ψ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the 106 elements given in (11) that we can rewrite in the matricial form, we can extract
two different bases for GL(8, R) those are

1, Lm, Rn, RnLm

or

1, Lm, Rn, LmRn.

We now remark some difficulties deriving from octonion non-associativity. When we translate
from generalized octonions to 8 × 8 real matrices, there is no problem. For example, in the
octonionic object

e4{[(e6ψ)e1]e5},
we quickly recognize the operators

L4R5 and R1L6.

Thus, rewriting the previous object, we have

L4R5R1L6ψ.

In going from 8 × 8 real matrices to octonions, we should be careful in ordering. For example,

ABψ

can be understood as

(AB)ψ or A(Bψ).

For example, by choosing A = L1 and B = L2, we have two possible different translations

(L1L2)ψ → (e1e2)ψ = e3ψ or L1(L2ψ) → e1(e2ψ).

Which is the right equation? The second translation is the right one, observe that L1L2 �= L3.
So, when we find multiple multiplications, to translate correctly in the octonionic formalism,
we have to use the following ordering rule:

ABC, . . . , Zψ = A(B(, . . . , (Zψ))).

7
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2.2. Coupled eigenvalue problem

Due to the non-commutativity of quaternions, they have represented a challenge when
mathematicians tried to extend the well-known complex eigenvalue problem to the quaternionic
field. The eigenvalue problem for H-linear quaternionic operators, which means that only the
left action of quaternionic imaginary units are present, and an extension to C- and R-linear
quaternionic operators that are, respectively, operators which contain, besides the left action
of all units, the right action of only one imaginary unit and the right action of all quaternionic
imaginary units, have been recently discussed and can be found in [1, 2]. The quaternionic
eigenvalue problem allowed the first steps in the theory of quaternionic differential equations
[3] and, the latter made possible the study of the Schrödinger equation in the presence of
a quaternionic potential in view of analyzing the quaternionic tunneling effect [12]. It is
worth pointing out that the eigenvalue problem for R-linear quaternionic operators provides a
remarkable version of the eigenvalue problem dividing it into two coupled equations. For the
octonionic eigenvalue problem, we resort to this same method that gives a coupled eigenvalue
problem.

Consider the octonionic real eigenvalue problem

Oψ = ψr, r ∈ R,

where matricial conversion is given by

Mo�8×1 = r �8×1, (16)

where Mo is a real square matrix of order 8. Note that the eigenvalue must be real and this
condition is too restrictive. The matrix Mo ∈ M8[R] will probably have complex eigenvalues
and, consequently, complex eigenvectors, but when this occurs the conversion backward to
the octonionic formalism is not possible. This is exactly the same problem when studying
the eigenvalue problem for real linear quaternionic operators. For a deeper discussion of this
subject, we refer the reader to [2]. We will use the same technique to study the octonionic
eigenvalue problem, but here this is done in a much more rough way. In order to differentiate
between octonionic and complex formalisms, after the conversion from octonion to matrices,
the complex unit will be denoted by i. So, accepting that Mo has complex eigenvalues, we can
rewrite the eigenvalue problem (16) as

Mo� = z �, z ∈ C. (17)

Introducing � = ξ + iη, where ξ and η are real column vectors 8 × 1 and z = a + ib, with
a, b ∈ R in (17), we have

Mo(ξ + iη) = (a + ib)(ξ + iη).

Separating the real from the imaginary part, we have a coupled equation given by

Moξ = aξ − bη
Moη = aη + bξ .

(18)

Now, all the elements present in (18) are real which allows the conversion to the octonionic
formalism. Let us see a one-dimensional example. Consider the problem

e4ψ = ψλ.

8
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We want to find ξ, η and λ ∈ C that satisfies (18). The first step is to translate the problem in
the matricial form which is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ0

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

The eigenvalues and eigenvectors of problem (19) are, respectively,
eigenvalues:

−i −i −i −i i i i i
eigenvectors:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
i
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
i
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
i
0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i
0
0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
−i
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
−i
0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−i
0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
0
0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider λ = −i and the respective eigenvector � = (0, 0, 0, i, 0, 0, 0, 1)t . We have a = 0
and b = −1, and separating the real from the imaginary part of the eigenvector,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
i
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we obtain

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that all elements a, b, ξ and η are real, so we can transform each of them in octonionic
numbers. This procedure gives

ξ = e7 and η = e3

9
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and the coupled equations, already in the octonionic formalism, became

e4(e7) = 0e3 + 1e3 = e3

e4(e3) = −e7 + 0e3 = −e7.

Following the same procedure, consider the 2 × 2 octonionic matrix(
1 e4

0 e5

)
.

Its conversion leads us to a 16 × 16 real matrix whose eigenvalues are i, −i and 1. The
algebraic multiplicity of λ is equal to its geometric multiplicity. In this case, the algebraic
multiplicity of i and −i is equal to 4 and the algebraic multiplicity of 1 is equal to
8. By taking the eigenvalue −i, we have a = 0 and b = −1, and the corresponding
real vectors (ξ and η) are given by ξ = (0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2)t and
η = (0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0)t which, in octonionic formalism, are written
as

ξ =
(−e3 + e6

2e7

)
and η =

(
e3 + e6

2e2

)
,

and the coupled equation becomes(
1 e4

0 e5

) (−e3 + e6

2e7

)
= 0

(−e3 + e6

2e7

)
− (−1)

(
e3 + e6

2e2

)
,

(
1 e4

0 e5

) (
e3 + e6

2e2

)
= −

(−e3 + e6

2e7

)
+ 0

(
e3 + e6

2e2

)
.

It is interesting to note that when the eigenvalue problem is considered for a H-linear
quaternionic operator, we have

Qψ = ψλ = ψa + ψ ib. (20)

Multiplying the expression above by i, we obtain

(Qψ)i = (ψa)i + (ψ ib)i,

but quaternions are associative which means that

Q(ψ i) = (ψ i)a − ψb.

The eigenvectors ψ i and ψ play the role of ξ and η, respectively, in the coupled equations.
Thus,

Qξ = Q(ψ i) = (ψ i)a − ψb = ξa − ηb

Qη = Qψ = ψa + (ψ i)b = ηa + ξb, (21)

which means that it is possible to associate any pair of functions ξ and η that solves the system
(21) with a corresponding eigenvector of (20).

2.3. Complexified eigenvalue problem

An alternative way to solve octonionic eigenvalue problems is to consider complexified
octonions, C(1, i) × O, which allow us to immediately translate equation (17) as follows:

O� = �z,

10
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where O is the octonionic matrix, � ∈ C(1, i)×O and z ∈ C(1, i). Introducing � = φ1 + iφ2

and z = a + ib, we have

O(φ1 + iφ2) = (φ1 + iφ2)(a + ib), O, φ1, φ2 ∈ O, a, b ∈ R. (22)

Algebraic manipulations lead us to the solution of the problem. For example, consider the
same problem present in section 2.2, which is

e4(φ1 + iφ2) = (φ1 + iφ2)(a + ib). (23)

Now, multiplying (23) by e4 from the left, we find

e4[e4(φ1 + iφ2)] = e4[(φ1 + iφ2)(a + ib)],

which gives

−(φ1 + iφ2) = [e4(φ1 + iφ2)] (a + ib) = (a + ib)2(φ1 + iφ2),

since e4 commutes with a + ib. The equation above gives the very simple system

a2 − b2 = −1 and 2ab = 0,

whose solution is a = 0 and b = ±1. So, the eigenvalue is ±i. Now, re-introducing −i in the
eigenvalue equation, we find the eigenvectors. Then, for z = −i, we have

e4(φ1 + iφ2) = (φ1 + iφ2)(−i) = −iφ1 + φ2 ⇒ e4φ1 = φ2, e4φ2 = −φ1.

Remembering that the octonionic imaginary units obey the relation

123, 145, 176, 246, 257, 347 and 365, (24)

it is easy to see that φ1 can assume the values e4, e5, e6 and e7 and φ2 can assume, respectively,
the values −1, e1, e2 and e3. Thus,

e4(e4 − i) = (e4 − i)(−i),

e4(e5 + e1) = (e5 + e1)(−i),

e4(e6 + e2) = (e6 + e2)(−i),

e4(e7 + e3) = (e7 + e3)(−i).

Let us consider the complexified octonion formalism to solve another example from section 2.2.
Consider (

1 e4

0 e5

)
.

We want to find the eigenvalues λ = a + ib, a, b ∈ R and the respective eigenvectors which
have the following form:(

φ1

φ2

)
+ i

(
ψ1

ψ2

)
, φ1,2, ψ1,2 ∈ O.

The eigenvalue problem is(
1 e4

0 e5

) (
φ1 + iψ1

φ2 + iψ2

)
=

(
φ1 + iψ1

φ2 + iψ2

)
(a + ib).

Performing the matrix multiplication, we have

e4(φ2 + iψ2) = (φ1 + iψ1)(a − 1 + ib), (25)

e5(φ2 + iψ2) = (φ2 + iψ2)(a + ib). (26)

11
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The procedure to solve equation (26) is almost the same as the previous one. So, repeating it
and fixing the eigenvalue −i, we find

φ2 + iψ2 ∈ {1 + ie5, e1 + ie4, e3 + ie6, e7 + ie2}.
In order to find φ1 and ψ1, we have to fix an eigenvalue on the set above which introduced in
equation (25) gives the result. To find all the possibilities, we have to do this for all elements
of the set. To illustrate this, we choose 1 + ie5. Remember that we are working with λ = −i,
so

e4(1 + ie5) = (φ1 + iψ1)(−1 − i) ⇒ e4 + ie1 = −φ1 − iφ1 − iψ1 + ψ1.

Solving the system of equations, we find φ1 = −(e1 + e4)/2 and ψ1 = (e4 − e1)/2, and we
have(

1 e4

0 e5

) [(−e1 − e4

2

)
+ i

(
e4 − e1

2e5

)]
=

[(−e1 − e4

2

)
+ i

(
e4 − e1

2e5

)]
(−i).

Repeating the procedure for the remaining three cases, always for λ = −i, we have(
1 e4

0 e5

) [(
1 + e5

2e1

)
+ i

(
1 − e5

2e4

)]
=

[(
1 + e5

2e1

)
+ i

(
1 − e5

2e4

)]
(−i),

(
1 e4

0 e5

) [(
e2 − e7

−2e3

)
+ i

(
e2 + e7

−2e6

)]
=

[(
e2 − e7

−2e3

)
+ i

(
e2 + e7

−2e6

)]
(−i),

(
1 e4

0 e5

) [(
e6 − e3

2e7

)
+ i

(
e3 + e6

2e2

)]
=

[(
e6 − e3

2e7

)
+ i

(
e3 + e6

2e2

)]
(−i).

Observe that what is missing when comparing the procedure, for a matrix of order 2, just
presented with the previous case is that, in addition, from equation (26) we have

φ2 + iψ2 = 0 ⇒ φ2 = ψ2 = 0.

Introducing φ2 + iψ2 = 0 in equation (25), we obtain

(φ1 + iψ1)(a − 1 + ib) = 0 ⇒ a = 1, b = 0.

So, another eigenvalue of the octonionic problem discussed is λ = 1 whose eigenvectors are

φ1 + iψ1,∀φ1, ψ1 ∈ O.

2.4. The group GL(8, C)

In the previous subsections, we have presented two equivalent methods to solve the octonionic
eigenvalue problem. The translation of octonionic left/right operators by 8 × 8 real matrices,
discussed in subsection 2.1, gives us the possibility of introducing a coupled eigenvalue
equation characterized by two real numbers a and b and two real eigenvectors ξ and η,
see equation (18). This real coupled eigenvalue problem can then be translated by using the
equivalence between the group GL(8, R) and the real linear octonionic operators in a coupled
real eigenvalue problem for octonionic operators,

OR ψξ = a ψξ − bψη,

OR ψη = a ψη + bψξ , (27)

with ψξ and ψη ∈ O, a and b ∈ R and OR represented by a real linear left/right
octonionic operator. The presence of two real coupled eigenvalues suggests, see subsection 2.3,
the possibility of re-writing such a coupled real eigenvalue problem as a ‘complex’ eigenvalue

12
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problem. Indeed, by introducing a new complex imaginary unit i which commutes with the
imaginary units of the octonionic field e1,2,...,7 , we find

O (ψξ + i ψη︸ ︷︷ ︸
� ∈ O × C

) = (a + i b︸ ︷︷ ︸
z ∈ C

)
(
ψξ + i ψη

)
. (28)

The introduction of this complex imaginary unit also suggests us to extend the matrix
translation for real linear octonionic operators,

OR ↔ GL(8, R),

introduced in [22] e re-presented in subsection 2.1, to complex linear octonionic operators

OC ↔ GL(8, C).

Thus, the two equivalent methods to solve the eigenvalue problem for a real linear octonionic
operators, presented in subsections 2.2 and 2.3, can be used to solve the eigenvalue problem for
complex linear octonionic operators. Observing that a complex linear octonionic operator, OC,
is characterized by two real linear octonionic operators (O1 R andO2 R—real and complex parts
of the complex linear octonionic operator OC), we can use the matrix translation ( O1 R → M1

and O2 R → M2) to represent the complex linear operator by the 8 × 8 complex matrix
M := M1 + i M2. By solving the eigenvalue problem for the complex matrix M, we find its
eigenvectors ψ ∈ C8×1 and eigenvalues z ∈ C. Then, we translate back to the octonionic
formalism

OC � = z �, (29)

with � ∈ O × C and z ∈ C. After a discussion of the hermiticity of octonionic operators and
the appropriate use of scalar product to define probability amplitudes, we shall give an explicit
example of a physical problem where this translation can be applied.

3. On the hermiticity of octonionic matrices and operators

An important step toward a generalization of standard quantum theories is the use of complex
scalar products or complex geometry as referred to by Rembieliński [25].

In quantum mechanics, it is well known that an anti-Hermitian operator obeys the
following rule:

〈ψ,Oϕ〉 = −〈Oψ, ϕ〉 ⇒
∫

ψ†(Oϕ) dx = −
∫

(Oψ)†ϕ dx = −
∫

(ψ†O†)ϕ dx. (30)

Nevertheless, while in complex and quaternionic quantum mechanics, we can define a direct
correspondence between Hermitian matrices and Hermitian operators; in octonionic quantum
mechanics this is not possible. For example, we shall see that the matricial representation of
em is an anti-Hermitian matrix, but no imaginary unit em represents an anti-Hermitian operator
[22]. In fact, given ψ : R → O and ϕ : R → O, octonionic functions of a real variable x,

ψ(x) = ψ0(x) +
7∑

n=1

ψn(x)en and ϕ(x) = ϕ0(x) +
7∑

n=1

ϕn(x)en,

where each ψn and each ϕn are real-valued functions; the non-associativity of the octonionic
algebra implies that∫

ψ†(emϕ) dx = 〈ψ, emϕ〉 �= −〈emψ, ϕ〉 =
∫

(ψ†em)ϕ dx. (31)

This is in contrast to the situation within complex and quaternionic quantum mechanics.
Such a difficulty is overcome by using a complex projection of the scalar product (complex

13
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geometry) with respect to one of our imaginary units. We break the symmetry between the
seven imaginary units e1, . . . , e7 and choose as a projection plane, the one characterized by
(1, e1). The new scalar product is quickly obtained by performing, in the standard definition,
the following substitution:∫

F(x) dx →
∫

c
F(x) dx ≡ 1

2

[∫
F(x) dx − e1

(∫
F(x) dx

)
e1

]
. (32)

Working in octonionic quantum mechanics with complex geometry, em represents an anti-
Hermitian operator. In order to simplify the proof for the imaginary unit e1, we write the
octonionic functions ψ and ϕ as follows:

ψ = ψ̃1 + e2ψ̃2 + e4ψ̃3 + e6ψ̃4

ϕ = ϕ̃1 + e2ϕ̃2 + e4ϕ̃3 + e6ϕ̃4, (33)

where ψ̃m and ϕ̃m, m = 1, 2, 3, 4 are complex-valued functions. The anti-hermiticity of e1 is
recovered if ∫

c
ψ†(e1ϕ) dx = −

∫
c
(e1ψ)†ϕ dx (34)

holds. Algebraic manipulation shows that, after the complex projection, the only non-
vanishing terms are represented by diagonal terms, that is, terms that contain the functions
ψ̃

†
1 ϕ̃1, ψ̃

†
2 ϕ̃2, ψ̃

†
3 ϕ̃3 and ψ̃

†
4 ϕ̃4. In fact, terms such as ψ̃

†
1 e5ϕ̃3 and ψ̃

†
3 ϕ̃4 are annulled by complex

projection,

ψ̃
†
1 (e5ϕ̃3) = (α0 − e1α1 )(e5β0 + e4β1 ) = ρ e4 + σ e5, (35)

(
ψ̃

†
3 e4

)
(−e7ϕ̃4) = −(γ0 e4 − γ1 e5)(e7δ0 − e6δ1 ) = � e2 + ς e3, (36)

with α0,1 , β0,1 , γ0,1 , δ0,1 , ρ, σ, � e ς being the real numbers. The diagonal terms give

∫
c
ψ†(e1ϕ) dx =

∫
c
ψ̃

†
1

(
e1ϕ̃1

)− (
ψ̃

†
2 e2

)
[e1(e2ϕ̃2)] − (

ψ̃
†
3 e4

)
[e1(e4ϕ̃3)] − (

ψ̃
†
4 e6

)
[e1(e6ϕ̃4)] dx

−
∫

c
(e1ψ)†ϕ dx =

∫
c

(
ψ̃

†
1 e1

)
ϕ̃1 − [(

ψ̃
†
2 e2

)
e1

]
(e2ϕ̃2)] − [(

ψ̃
†
3 e4

)
e1

]
(e4ϕ̃3)]

−[(
ψ̃

†
4 e6

)
e1

]
(e6ϕ̃4)] dx.

The parentheses above are not relevant since the first term ψ̃
†
1 e1ϕ̃1 is a complex number and

the three remaining terms, respectively, ψ̃†
2 e2e1e2ϕ̃2 (subalgebra 123), ψ̃†

3 e4e1e4ϕ̃3 (subalgebra
145) and ψ̃

†
4 e6e1e6ϕ̃4 (subalgebra 167) are quaternions. This proves that equation (34) holds.

Let us discuss the octonionic Hermitian operator. Following the well-known definition, we
have O as a Hermitian operator, if

〈ψ,Oϕ〉 = 〈Oψ, ϕ〉 ⇒
∫

ψ†(Oϕ) dx =
∫

(Oψ)†ϕ dx =
∫

(ψ†O†)ϕ dx. (37)

Now, suppose O is an octonionic Hermitian operator and

Oψ = ψλ, λ ∈ O. (38)

Applying the definition of hermiticity is easy to prove that λ must be real. In fact, let ψ = ϕ,
then

〈ψ,Oψ〉 = 〈Oψ,ψ〉 ⇒ ψ†(Oψ) = (Oψ)†ψ = (ψ†O†)ψ (39)

14
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which gives, after using equation (38),

ψ†(ψλ) = (λ∗ψ†)ψ. (40)

But octonionic numbers, o1, o2 ∈ O, satisfy the property

o†
1(o1o2) = (

o†
1o1

)
o2 = (

o2o†
1

)
o1. (41)

So, returning to equation (40) and using the property above, we have

ψ†(ψλ) = (ψ†ψ)λ = |ψ |2λ (42)

and

(λ†ψ†)ψ = ψ†(ψλ†) = (ψ†ψ)λ† = |ψ |2λ†. (43)

Since |ψ |2 is real, we obtain

λ = λ† ⇒ λ ∈ R. (44)

This means that even in the octonionic formalism, given a Hermitian operator, its eigenvalues
must be real. Now, consider the example given by Dray et al in [20]. Given a Hermitian matrix,
M,

M =
(

1 e4

−e4 1

)
,

we find (
1 e4

−e4 1

) (
e5

e7

)
=

(
e5

e7

)
(1 − e6). (45)

So, the Hermitian matrix M has an eigenvalue given by 1 − e6 (∈ O), and (e5e7)
t is an

eigenvector associated with it. Since the matrix is Hermitian, we should expect real eigenvalues,
but this does not happen. How can we prove that the matrix M does not represent a Hermitian
operator? Consider example (45) and let ψ = ϕ. So, we have

ψ†(Oψ) = ψ†(ψλ) = (−e5 − e7)

[(
e5

e7

)
(1 − e6)

]

= (−e5 − e7)

(
e5 + e3

e7 − e1

)
= −e5(e5 + e3) − e7(e7 − e1)

= 1 − e6 + 1 − e6 = 2 − 2 e6. (46)

Now, calculating (Oψ)†ψ, we find

(Oψ)†ψ =
(

e5 + e3

e7 − e1

)† (
e5

e7

)
= (−e5 − e3 − e7 + e1)

(
e5

e7

)

= −(e5 + e3)e5 + (e1 − e7)e7 = 1 + e6 + e6 + 1 = 2 + 2 e6. (47)

Thus, according to definition (37) the operator associated with the Hermitian matrix M is not
a Hermitian operator since ψ†(Oψ) �= (ψ† O†)ψ .

At this point, we can assert that octonionic Hermitian matrices are not associated with the
Hermitian operators, so it is natural to find non-real eigenvalues for the matrices. We conclude
that octonionic Hermitian operators necessarily have real eigenvalues. Furthermore, a way to
re-obtain the relation between Hermitian matrices and Hermitian operators is by using the
complex projection. It is noteworthy to observe that the complex projection of the internal
product gives the same result. In the example just given

[〈ψ,Oψ〉]C = [〈Oψ,ψ〉]C = 2. (48)
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4. Conclusions

It is well known that amplitudes of probability have to be defined in associative division
algebras [5]. Amplitudes of probabilities defined in non-division algebras fail to satisfy
the requirement that, in the absence of quantum interference effects, probability amplitude
superposition should reduce to probability superposition. The associative law of multiplication
is needed to satisfy the completeness formula. Amidst these constraints, how can it be
possible to formulate quantum theories by using wavefunctions defined in non-division or
non-associative algebras? The answer is very simple. The constraints concern the inner product
and not the Hilbert space in which we define our wavefunctions. The amplitudes of probability
have to be defined in C or H, but the vectors in the Hilbert space have no constraint. The choice
of the quaternionic inner product seems to be best adapted to investigate deviations from the
standard complex theory in quantum mechanics and quantum fields [5].

In this paper, we have suggested a solution for the octonionic eigenvalue problem by a
formulation based on a coupled equation with two real parameters which play the same role
of the complex eigenvalue in complex and quaternionic quantum mechanics. The complex
eigenvalue problem in complex and quaternionic quantum mechanics can be obviously solved
by a real coupled problem and this should represent the complex and quaternionic limits of
the octonionic eigenvalue problem proposed in this paper.

An intriguing result obtained from our investigation was that octonionic Hermitian
matrices do not necessarily represent octonionic Hermitian operators. This is essentially due
to the fact that octonionic Hermitian matrices can have not real eigenvalues. To overcome this
problem, we need to introduce a complex geometry, i.e. complex inner products. The natural
choice is represented by the use of the imaginary unit i which commutes with the octonionic
imaginary units e1,2,...,7 .

An interesting application of the material presented in this work can be immediately found
in the octonionic formulation of the Dirac equation. The Dirac Hamiltonian [26],

H = α · p c + β m c
2

, p = − i � ∇, (49)

which describes the temporal behavior of relativistic particles is given in terms of 4 × 4
complex matrices, α and β, satisfying the Dirac algebra

{α, β} = 0, {αm, αn} = 0 for m �= n, α
2

n = β
2 = I4×4 .

By using the quaternionic sub-algebra e1,2,3 , we can immediately find a complexified
quaternionic representation for the α matrices,

α = i e = (i e1 , i e2 , i e3 ). (50)

The matrix β can be represented by using, for example, the octonionic imaginary unit e4 ,

β = i e4 . (51)

An octonionic representation for the Dirac Hamiltonian is thus given by

H → � c e · ∇ + i m c
2
e4 . (52)

The complexified octonionic solution

ψ0 + e · ψ︸ ︷︷ ︸
�∈H×C

+e4 (φ0 + e · φ︸ ︷︷ ︸
�∈H×C

), ψ0 ,ψ, φ0 ,φ ∈ C(1, i),

by using C inner products contains in this formulation two orthogonal spinorial solutions, �

and �, each one with its four complex degrees of freedom represents a Dirac particle. This
suggests a natural e simple one-dimensional octonionic formulation of the standard model,
where two orthogonal spinorial solutions are needed to represent the leptonic and quark
doublets [27].
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