471 research outputs found

    Modelos acoplados do IPCC-AR4 e o gradiente meridional de temperatua da superficie do mar no atlântico tropical : relaçoes com a precipitaçao no norte do nordeste do Brasil

    Get PDF
    Este artigo mostra como três modelos acoplados do Intergovernmental on Panel Climate Change - (IPCC-AR4), o FGOALS1. 0G – LASG do Institute of Atmospheric Physics of China, o GISSER da National Aeronautics Space Admnistration (NASA) e o GFDL_CM2 da National Oceanic and Atmospheric Administration (NOAA), simularam a variabilidade do gradiente meridional de Temperatura da Superfície do Mar (TSM), entre os meses de fevereiro a maio, no Atlântico Tropical (1901-1999). A precipitação durante a estação chuvosa (fevereiro a maio) no setor norte do Nordeste do Brasil (NEB) foi também analisada pelos três modelos e comparada com as observações. Os modelos GISSER e FGOALS1.0G mostraram melhor desempenho na simulação do sinal do gradiente meridional de TSM no Atlântico Tropical para o período de 1901 a 1999. Destaca-se que os modelos apresentaram um melhor desempenho na simulação da tendência decadal, conseguindo explicar entre 50% a 80% da variabilidade do gradiente, com a TSM do setor sul sendo mais bem simulada

    An airborne regional carbon balance for central amazonia

    Get PDF
    We obtained regional estimates of surface CO2 exchange rates using atmospheric boundary layer budgeting techniques above tropical forest near Manaus, Brazil. Comparisons were made with simultaneous measurements from two eddy covariance towers below. Although there was good agreement for daytime measurements, large differences emerged for integrating periods dominated by the night-time fluxes. These results suggest that a systematic underestimation of night time respiratory effluxes may be responsible for the high Amazonian carbon sink suggested by several previous eddy covariance studies. Large CO2 fluxes from riverine sources or high respiratory losses from recently disturbed forests do not need to be invoked in order to balance the carbon budget of the Amazon. Our results do not, however, discount some contribution of these processes to the overall Amazon carbon budget

    Microbial Translocation Is Associated with Extensive Immune Activation in Dengue Virus Infected Patients with Severe Disease

    Get PDF
    Background:Severe dengue virus (DENV) disease is associated with extensive immune activation, characterized by a cytokine storm. Previously, elevated lipopolysaccharide (LPS) levels in dengue were found to correlate with clinical disease severity. In the present cross-sectional study we identified markers of microbial translocation and immune activation, which are associated with severe manifestations of DENV infection.Methods:Serum samples from DENV-infected patients were collected during the outbreak in 2010 in the State of São Paulo, Brazil. Levels of LPS, lipopolysaccharide binding protein (LBP), soluble CD14 (sCD14) and IgM and IgG endotoxin core antibodies were determined by ELISA. Thirty cytokines were quantified using a multiplex luminex system. Patients were classified according to the 2009 WHO classification and the occurrence of plasma leakage/shock and hemorrhage. Moreover, a (non-supervised) cluster analysis based on the expression of the quantified cytokines was applied to identify groups of patients with similar cytokine profiles. Markers of microbial translocation were linked to groups with similar clinical disease severity and clusters with similar cytokine profiles.Results:Cluster analysis indicated that LPS levels were significantly increased in patients with a profound pro-inflammatory cytokine profile. LBP and sCD14 showed significantly increased levels in patients with severe disease in the clinical classification and in patients with severe inflammation in the cluster analysis. With both the clinical classification and the cluster analysis, levels of IL-6, IL-8, sIL-2R, MCP-1, RANTES, HGF, G-CSF and EGF were associated with severe disease.Conclusions:The present study provides evidence that both microbial translocation and extensive immune activation occur during severe DENV infection and may play an important role in the pathogenesis

    [vasopressin Intravenous Infusion Causes Dose Dependent Adverse Cardiovascular Effects In Anesthetized Dogs].

    Get PDF
    BACKGROUND: Arginine vasopressin (AVP) has been broadly used in the management of vasodilatory shock. However, there are many concerns regarding its clinical use, especially in high doses, as it can be associated with adverse cardiovascular events. OBJECTIVE: To investigate the cardiovascular effects of AVP in continuous IV infusion on hemodynamic parameters in dogs. METHODS: Sixteen healthy mongrel dogs, anesthetized with pentobarbital were intravascularly catheterized, and randomly assigned to: control (saline-placebo; n=8) and AVP (n=8) groups. The study group was infused with AVP for three consecutive 10-minute periods at logarithmically increasing doses (0.01; 0.1 and 1.0 U/kg/min), at them 20-min intervals. Heart rate (HR) and intravascular pressures were continuously recorded. Cardiac output was measured by the thermodilution method. RESULTS: No significant hemodynamic effects were observed during 0.01 U/kg/min of AVP infusion, but at higher doses (0.1 and 1.0 U/kg/min) a progressive increase in mean arterial pressure (MAP) and systemic vascular resistance index (SVRI) were observed, with a significant decrease in HR and the cardiac index (CI). A significant increase in the pulmonary vascular resistance index (PVRI) was also observed with the 1.0 U/kg/min dose, mainly due to the decrease in the CI. CONCLUSION: AVP, when administered at doses between 0.1 and 1.0 U/kg/min, induced significant increases in MAP and SVRI, with negative inotropic and chronotropic effects in healthy animals. Although these doses are ten to thousand times greater than those routinely used for the management of vasodilatory shock, our data confirm that AVP might be used carefully and under strict hemodynamic monitoring in clinical practice, especially if doses higher than 0.01 U/kg/min are needed.942213218, 229-234, 216-22

    Isoprene and monoterpene fluxes from central amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget

    Get PDF
    We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m^−2 h^−1 for isoprene, 0.20 mg C m^−2 h^−1 for α-pinene, and 0.39 mg C m^−2 h^−1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM).\ud \ud In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3–8×10^6 molecules cm^−3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5×10^6 molecules cm^−3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign.\ud \ud The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO2 flux estimate, 1–6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions

    Kinin B1 receptor controls maternal adiponectin levels and influences offspring weight gain

    Get PDF
    Given the importance of the kinin B1 receptor in insulin and leptin hormonal regulation, which in turn is crucial in maternal adaptations to ensure nutrient supply to the fetus, we investigated the role of this receptor in maternal metabolism and fetoplacental development. Wild-type and kinin B1 receptor-deficient (B1KO) female mice were mated with male mice of the opposite genotype. Consequently, the entire litter was heterozygous for kinin B1 receptor, ensuring that there would be no influence of offspring genotype on the maternal phenotype. Maternal kinin B1 receptor blockade reduces adiponectin secretion by adipose tissue ex vivo, consistent with lower adiponectin levels in pregnant B1KO mice. Furthermore, fasting insulinemia also increased, which was associated with placental insulin resistance, reduced placental glycogen accumulation, and heavier offspring. Therefore, we propose the combination of chronic hyperinsulinemia and reduced adiponectin secretion in B1KO female mice create a maternal obesogenic environment that results in heavier pups
    • …
    corecore