15 research outputs found

    Food effects on statolith composition of the common cuttlefish (Sepia officinalis)

    Get PDF
    The concentration of trace elements within cephalopod statoliths can provide a record of the environmental characteristics at the time of calcification. To reconstruct accurately the environmental characteristics at the time of calcification, it is important to understand the influence of as many factors as possible. To test the hypothesis that the elemental composition of cuttlefish statoliths could be influenced by diet, juvenile Sepia officinalis were fed either shrimp Crangon sp. or fish Clupea harengus under equal temperature and salinity regimes in laboratory experiments. Element concentrations in different regions of the statoliths (core–lateral dome–rostrum) were determined using laser ablation inductively coupled plasma mass spectrometry (LA- ICPMS). The ratios of Sr/Ca, Ba/Ca, Mn/Ca and Y/Ca in the statolith’s lateral dome of shrimp-fed cuttlefish were significantly higher than in the statolith’s lateral dome of fish-fed cuttlefish. Moreover, significant differences between statolith regions were found for all analysed elements. The fact that diet adds a considerable variation especially to Sr/Ca and Ba/Ca must be taken into account in future micro-chemical statolith studies targeting cephalopod’s life history

    Otolith geochemistry does not reflect dispersal history of clownfish larvae

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 29 (2010): 883-891, doi:10.1007/s00338-010-0652-z.Natural geochemical signatures in calcified structures are commonly employed to retrospectively estimate dispersal pathways of larval fish and invertebrates. However, the accuracy of the approach is generally untested due to the absence of individuals with known dispersal histories. We used genetic parentage analysis (genotyping) to divide 110 new recruits of the orange clownfish, Amphiprion percula, from Kimbe Island, Papua New Guinea, into two groups: “self-recruiters” spawned by parents on Kimbe Island and “immigrants” that had dispersed from distant reefs (>10km away). Analysis of daily increments in sagittal otoliths found no significant difference in PLDs or otolith growth rates between self-recruiting and immigrant larvae. We also quantified otolith Sr/Ca and Ba/Ca ratios during the larval phase using laser ablation inductively coupled plasma mass spectrometry. Again, we found no significant differences in larval profiles of either element between self-recruits and immigrants. Our results highlight the need for caution when interpreting otolith dispersal histories based on natural geochemical tags in the absence of water chemistry data or known-origin larvae with which to test the discriminatory ability of natural tags.Research was supported by the Australian Research Council, the Coral Reef Initiatives for the Pacific (CRISP), the Global Environmental Facility CRTR Connectivity Working Group, the Total Foundation, a National Science Foundation grant (#0424688) to SRT, and a National Science Foundation Graduate Research Fellowship to MLB

    Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas

    Get PDF
    Determining seafood geographic origin is critical for controlling its quality and safeguarding the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations within an estuarine system (Ria de Aveiro, Portugal). Results suggest no differences in TEF of cockle shells captured by hand or by hand-raking, thus confirming that metal rakes do not act as a potential source of metal contamination that could somehow bias TEF results. In contrast, significant differences were recorded among locations for all trace elements analysed. A Canonical Analysis of Principal Coordinates (CAP) revealed that 92% of the samples could be successfully classified according to their fishing location using TEF. We show that TEF can be an accurate, fast and reliable method to determine the geographic origin of bivalves, even among locations separated less than 1 km apart within the same estuarine system. Nonetheless, follow up studies are needed to determine if TEF can reliably discriminate between bivalves originating from different ecosystems

    Detection of periodic Sr Ca-1 cycles along gastropod statoliths allows the accurate estimation of age

    No full text
    Gastropods retain less obvious periodic growth marks on calcified structures than individuals in other groups (e.g. bivalves, cephalopods, fish), a fact that has hampered age estimation in this Class. Nevertheless, a model of age estimation for the gastropod Nassarius reticulatus is possible based on the annual growth rings deposited in statoliths during the winter. These spherical aragonitic carbonate structures are located inside the statocysts and contain a characteristic microstructural pattern of concentric rings. However, this pattern can be biased by the formation of nonperiodic disturbance rings (DRs). In Aveiro (NW Portugal), an increased frequency of DRs was reported in statoliths of specimens inhabiting the Ria de Aveiro lagoon (a highly dynamic environment), when compared with specimens collected from the relatively environmentally stable adjacent offshore area. One approach to resolve annual growth in organically precipitated carbonates is to find a chemical signature within the microstructure that faithfully records changes in seasonal environmental parameters. In this contribution, we have analysed the Sr Ca−1 variation along statolith sections by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy to resolve seasonal cycles of temperature, allowing the identification of annual growth rings. Combining this information with size–frequency distributions of shell height, we found strong evidence that the rings chemically labelled with 88Sr 48Ca−1 peaks are formed annually during the cold season. Hence, LAICPMS allows not only the detection of visible rings but also the distinction between rings formed at low temperatures (i.e. a periodic seasonal signature) and those of disturbance (not characterised by increased 88Sr 48Ca−1). There is also clear evidence that the 88Sr 48Ca−1 peaks become less conspicuous from the nucleus to the statolith edge, leading to a loss of discriminatory power for the identification of older age rings. Nevertheless, this new method allows the accurate age estimation of N. reticulatus specimens and is liable to be applied in a wide range of gastropods after specific validation

    Elemental distribution in cephalopod statoliths: NanoSIMS provides new insights into nano-scale structure

    No full text
    We have applied the novel analytical method NanoSIMS to cephalopod statoliths for the first time in order to analyse their chemical microstructure, using a spatial resolution of 400 nm. This technique makes it possible to analyse in situ nano-scale chemical variations between increment layers. In statoliths of the boreoatlantic armhook squid Gonatus fabricii, we found distinct concentration patterns indicating a periodicity in strontium and sodium distributions. Sr and Na show a negative relation, both elements showing alternating patterns where the increments vary in width between approximately 1 and 5 ÎŒm. Results suggest, that aragonite deposited during the night is rich in Na and poor in Sr, while aragonite deposited during the day is rich in Sr and poor in Na. This study demonstrates the excellent suitability of NanoSIMS for nano-scale microchemical analyses of aragonite, providing new information on calcification processes and individual life histories. Possible future fields of application include not only cephalopod statoliths, but also virtually all biomineralized tissues in aquatic organisms like fish otoliths, gastropod statoliths, bivalve shells, foraminifers and corals

    An experimental evaluation of transgenerational isotope labelling in a coral reef grouper

    No full text
    Transgenerational isotope labelling (TRAIL) using enriched stable isotopes provides a novel means of mass-marking marine fish larvae and estimating larval dispersal. The technique, therefore, provides a new way of addressing questions about demographic population connectivity and larval export from no-take marine protected areas. However, successful field applications must be preceded by larval rearing studies that validate the geochemical marking technique, determine appropriate concentrations and demonstrate that larvae are not adversely affected. Here, we test whether injection of enriched stable barium isotopes (135Ba and 137Ba) at two dose rates produces unequivocal marks on the otoliths of the coral reef grouper Epinephelus fuscoguttatus. We also assess potential negative effects on reproductive performance, egg size, condition and larval growth due to injection of adult female fish. The injection of barium isotopes at both 0.5 and 2.0 mg Ba/kg body weight into the body cavities of gravid female Wsh was 100% successful in the geochemical tagging of the otoliths of larvae from the first spawning after injection. The low-dose rate produced no negative effects on eggs or larvae. However, the higher dose rate of 2 mg Ba/kg produced small reductions in yolk sac area, oil globule area, standard length and head depth of pre-feeding larvae. Given the success of the 0.5 mg Ba/kg dose rate, it is clearly possible to produce a reliable mark and keep the concentration below any level that could affect larval growth or survival. Hence, enriched Ba isotope injections will provide an effective means of mass-marking grouper larvae
    corecore