168 research outputs found

    Statistical Modeling of Transcription Factor Binding Affinities Predicts Regulatory Interactions

    Get PDF
    Recent experimental and theoretical efforts have highlighted the fact that binding of transcription factors to DNA can be more accurately described by continuous measures of their binding affinities, rather than a discrete description in terms of binding sites. While the binding affinities can be predicted from a physical model, it is often desirable to know the distribution of binding affinities for specific sequence backgrounds. In this paper, we present a statistical approach to derive the exact distribution for sequence models with fixed GC content. We demonstrate that the affinity distribution of almost all known transcription factors can be effectively parametrized by a class of generalized extreme value distributions. Moreover, this parameterization also describes the affinity distribution for sequence backgrounds with variable GC content, such as human promoter sequences. Our approach is applicable to arbitrary sequences and all transcription factors with known binding preferences that can be described in terms of a motif matrix. The statistical treatment also provides a proper framework to directly compare transcription factors with very different affinity distributions. This is illustrated by our analysis of human promoters with known binding sites, for many of which we could identify the known regulators as those with the highest affinity. The combination of physical model and statistical normalization provides a quantitative measure which ranks transcription factors for a given sequence, and which can be compared directly with large-scale binding data. Its successful application to human promoter sequences serves as an encouraging example of how the method can be applied to other sequences

    Can Molecular Motors Drive Distance Measurements in Injured Neurons?

    Get PDF
    Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury–a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes

    Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression

    Get PDF
    Background: In recent years a number of potential synapto-nuclear protein messengers have been characterized that are thought to be involved in plasticity-related gene expression, and that have the capacity of importin- mediated and activity-dependent nuclear import. However, there is a surprising paucity of data showing the nuclear import of such proteins in cellular models of learning and memory. Only recently it was found that the transcription factor cyclic AMP response element binding protein 2 (CREB2) transits to the nucleus during long-term depression (LTD), but not during long-term potentiation (LTP) of synaptic transmission in hippocampal primary neurons. Jacob is another messenger that couples NMDA-receptor-activity to nuclear gene expression. We therefore aimed to study whether Jacob accumulates in the nucleus in physiological relevant models of activity-dependent synaptic plasticity. Methodology/Principal Findings: We have analyzed the dynamics of Jacob’s nuclear import following induction of NMDA-receptor dependent LTP or LTD at Schaffer collateral-CA1 synapses in rat hippocampal slices. Using time-lapse imaging of neurons expressing a Jacob-Green-Fluorescent-Protein we found that Jacob rapidly translocates from dendrites to the nucleus already during the tetanization period of LTP, but not after induction of LTD. Immunocytochemical stainings confirmed the nuclear accumulation of endogenous Jacob in comparison to apical dendrites after induction of LTP but not LTD. Complementary findings were obtained after induction of NMDA-receptor dependent chemical LTP and LTD i

    Altered translation of GATA1 in Diamond-Blackfan anemia

    Get PDF
    Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA)[superscript 1, 2], congenital asplenia[superscript 3] and T cell leukemia[superscript 4]. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type– and tissue-specific defects remains unknown[superscript 5]. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.National Institutes of Health (U.S.) (Grant P01 HL32262)National Institutes of Health (U.S.) (Grant U54 HG003067-09

    Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    Get PDF
    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells

    Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Get PDF
    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase

    Altered Thymic Function during Interferon Therapy in HCV-Infected Patients

    Get PDF
    Interferon alpha (IFNΞ±) therapy, despite good efficacy in curing HCV infection, leads to major side effects, in particular inducement of a strong peripheral T-cell lymphocytopenia. We here analyze the early consequences of IFNΞ± therapy on both thymic function and peripheral T-cell homeostasis in patients in the acute or chronic phase of HCV-infection as well as in HIV/HCV co-infected patients. The evolution of T-cell subsets and T-cell homeostasis were estimated by flow cytometry while thymic function was measured through quantification of T-cell receptor excision circles (TREC) and estimation of intrathymic precursor T-cell proliferation during the first four months following the initiation of IFNΞ± therapy. Beginning with the first month of therapy, a profound lymphocytopenia was observed for all T-cell subsets, including naΓ―ve T-cells and recent thymic emigrants (RTE), associated with inhibition of intrathymic precursor T-cell proliferation. Interleukin (IL)-7 plasma concentration rapidly dropped while lymphocytopenia progressed. This was neither a consequence of higher consumption of the cytokine nor due to its neutralization by soluble CD127. Decrease in IL-7 plasma concentration under IFNΞ± therapy correlated with the decline in HCV viral load, thymic activity and RTE concentration in blood. These data demonstrate that IFNΞ±-based therapy rapidly impacts on thymopoiesis and, consequently, perturbs T-cell homeostasis. Such a side effect might be detrimental for the continuation of IFNΞ± therapy and may lead to an increased level of infectious risk, in particular in HIV/HCV co-infected patients. Altogether, this study suggests the therapeutic potential of IL-7 in the maintenance of peripheral T-cell homeostasis in IFNΞ±-treated patients

    Evolution of complexity in the zebrafish synapse proteome

    Get PDF
    The proteome of human brain synapses is highly complex and mutated in over 130 diseases. This complexity arose from two whole genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases, however its synapse proteome is uncharacterised and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterisation of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the Post Synaptic Density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ~1000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate vertebrate species evolved distinct synapse types and functions. The datasets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases

    Performance Analysis of Orthogonal Pairs Designed for an Expanded Eukaryotic Genetic Code

    Get PDF
    Background: The suppression of amber stop codons with non-canonical amino acids (ncAAs) is used for the site-specific introduction of many unusual functions into proteins. Specific orthogonal aminoacyl-tRNA synthetase (o-aaRS)/amber suppressor tRNA CUA pairs (o-pairs) for the incorporation of ncAAs in S. cerevisiae were previously selected from an E. coli tyrosyl-tRNA synthetase/tRNACUA mutant library. Incorporation fidelity relies on the specificity of the o-aaRSs for their ncAAs and the ability to effectively discriminate against their natural substrate Tyr or any other canonical amino acid. Methodology/Principal Findings: We used o-pairs previously developed for ncAAs carrying reactive alkyne-, azido-, or photocrosslinker side chains to suppress an amber mutant of human superoxide dismutase 1 in S. cerevisiae. We found worse incorporation efficiencies of the alkyne- and the photocrosslinker ncAAs than reported earlier. In our hands, amber suppression with the ncAA containing the azido group did not occur at all. In addition to the incorporation experiments in S. cerevisiae, we analyzed the catalytic properties of the o-aaRSs in vitro. Surprisingly, all o-aaRSs showed much higher preference for their natural substrate Tyr than for any of the tested ncAAs. While it is unclear why efficiently recognized Tyr is not inserted at amber codons, we speculate that metabolically inert ncAAs accumulate in the cell, and for this reason they are incorporated despite being weak substrates for the o-aaRSs. Conclusions/Significance: O-pairs have been developed for a whole plethora of ncAAs. However, a systematic and detaile
    • …
    corecore